Kinematic and dynamic vehicle models for autonomous driving control design

Jason Kong, Mark Pfeiffer, Georg Schildbach, F. Borrelli
{"title":"Kinematic and dynamic vehicle models for autonomous driving control design","authors":"Jason Kong, Mark Pfeiffer, Georg Schildbach, F. Borrelli","doi":"10.1109/IVS.2015.7225830","DOIUrl":null,"url":null,"abstract":"We study the use of kinematic and dynamic vehicle models for model-based control design used in autonomous driving. In particular, we analyze the statistics of the forecast error of these two models by using experimental data. In addition, we study the effect of discretization on forecast error. We use the results of the first part to motivate the design of a controller for an autonomous vehicle using model predictive control (MPC) and a simple kinematic bicycle model. The proposed approach is less computationally expensive than existing methods which use vehicle tire models. Moreover it can be implemented at low vehicle speeds where tire models become singular. Experimental results show the effectiveness of the proposed approach at various speeds on windy roads.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"548","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 548

Abstract

We study the use of kinematic and dynamic vehicle models for model-based control design used in autonomous driving. In particular, we analyze the statistics of the forecast error of these two models by using experimental data. In addition, we study the effect of discretization on forecast error. We use the results of the first part to motivate the design of a controller for an autonomous vehicle using model predictive control (MPC) and a simple kinematic bicycle model. The proposed approach is less computationally expensive than existing methods which use vehicle tire models. Moreover it can be implemented at low vehicle speeds where tire models become singular. Experimental results show the effectiveness of the proposed approach at various speeds on windy roads.
用于自动驾驶控制设计的运动学和动力学车辆模型
我们研究了自动驾驶中基于模型的控制设计中运动学和动力学车辆模型的使用。特别地,我们用实验数据对这两种模型的预测误差进行了统计分析。此外,我们还研究了离散化对预测误差的影响。我们使用第一部分的结果来激励使用模型预测控制(MPC)和简单的运动学自行车模型的自动驾驶汽车控制器的设计。与现有的使用车辆轮胎模型的方法相比,该方法的计算成本更低。此外,它可以在轮胎模型变得单一的低车速下实现。实验结果表明,该方法在不同速度的多风路面上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信