Pipeline and batch sharing in grid workloads

D. Thain, John Bent, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, M. Livny
{"title":"Pipeline and batch sharing in grid workloads","authors":"D. Thain, John Bent, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, M. Livny","doi":"10.1109/HPDC.2003.1210025","DOIUrl":null,"url":null,"abstract":"We present a study of six batch-pipeline scientific workloads that are candidates for execution on computational grids. Whereas other studies focus on the behavior of single applications, this study characterizes workloads composed of pipelines of sequential processes that use file storage for communication and also share measurements of the memory, CPU, and I/O requirements of individual components as well as analyses of I/O sharing within complete batches. We conclude with a discussion of the ramifications of these workloads for end-to-end scalability and overall system design.","PeriodicalId":430378,"journal":{"name":"High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.2003.1210025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

We present a study of six batch-pipeline scientific workloads that are candidates for execution on computational grids. Whereas other studies focus on the behavior of single applications, this study characterizes workloads composed of pipelines of sequential processes that use file storage for communication and also share measurements of the memory, CPU, and I/O requirements of individual components as well as analyses of I/O sharing within complete batches. We conclude with a discussion of the ramifications of these workloads for end-to-end scalability and overall system design.
网格工作负载中的管道和批处理共享
我们提出了六个批处理管道科学工作负载的研究,这些工作负载是在计算网格上执行的候选者。尽管其他研究关注单个应用程序的行为,但本研究描述了由使用文件存储进行通信的顺序进程管道组成的工作负载,并且还共享内存、CPU和单个组件的I/O需求的测量,以及完整批处理中I/O共享的分析。最后,我们将讨论这些工作负载对端到端可伸缩性和整体系统设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信