Anomaly Detection Using Forecasting Methods ARIMA and HWDS

Eduardo H. M. Pena, Marcos V. O. de Assis, M. L. Proença
{"title":"Anomaly Detection Using Forecasting Methods ARIMA and HWDS","authors":"Eduardo H. M. Pena, Marcos V. O. de Assis, M. L. Proença","doi":"10.1109/SCCC.2013.18","DOIUrl":null,"url":null,"abstract":"Understanding the normal operation of IP networks is a common step in building a solution for automatic detection of network anomalies. Toward this end, we analyze the usage of two different approaches: the AutoRegressive Integrated Moving Average (ARIMA) model and an improvement of the traditional Holt-winters method. We use both models for traffic characterization, called Digital Signature of Network Segment using Flow analysis (DSNSF), and volume anomaly or outliers detection. The DSNSFs obtained by the presented models are compared to the actual traffic of bits and packets of a real network environment and then subjected to specific evaluations in order to measure its accuracy. The presented models are capable of providing feedback through its predictive capabilities and hence provide an early warning system.","PeriodicalId":182181,"journal":{"name":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Understanding the normal operation of IP networks is a common step in building a solution for automatic detection of network anomalies. Toward this end, we analyze the usage of two different approaches: the AutoRegressive Integrated Moving Average (ARIMA) model and an improvement of the traditional Holt-winters method. We use both models for traffic characterization, called Digital Signature of Network Segment using Flow analysis (DSNSF), and volume anomaly or outliers detection. The DSNSFs obtained by the presented models are compared to the actual traffic of bits and packets of a real network environment and then subjected to specific evaluations in order to measure its accuracy. The presented models are capable of providing feedback through its predictive capabilities and hence provide an early warning system.
基于预测方法ARIMA和HWDS的异常检测
了解IP网络的正常运行是构建网络异常自动检测解决方案的常见步骤。为此,我们分析了两种不同方法的使用:自回归综合移动平均(ARIMA)模型和传统霍尔特冬季方法的改进。我们使用这两种模型进行流量表征,称为使用流量分析的网络段数字签名(DSNSF),以及体积异常或异常值检测。将所提模型得到的dsnsf与真实网络环境的实际比特和包流量进行比较,然后进行具体的评估,以衡量其准确性。所提出的模型能够通过其预测能力提供反馈,从而提供早期预警系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信