A queuing model for systems with rework and process downtime

Adam J. Brown, F. Badurdeen
{"title":"A queuing model for systems with rework and process downtime","authors":"Adam J. Brown, F. Badurdeen","doi":"10.1109/CoASE.2013.6654043","DOIUrl":null,"url":null,"abstract":"In manufacturing systems, lead time reduction can provide a strategic advantage, specifically when it means the elimination of non-value added waiting time. Queuing theory and Discrete Event Simulation (DES) are two methods commonly used to analyze lead time reduction efforts. Queuing models offer the advantage of fast analytical solutions, whereas DES analyses allow incorporation of high levels of system detail. There is great potential in the coordinated use of these methods. However, it is important to fully understand the assumptions and approximations of queuing theory as it is extended to increasingly realistic scenarios. Here, a novel formulation of queuing model is demonstrated for systems with both rework and process downtime. An emphasis is placed on the extensive testing of the queuing model vs. DES under a wide range of conditions, including various levels of rework rate, arrival variability, and process downtime. The queuing model proves to be effective at estimating lead time in all conditions examined.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6654043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In manufacturing systems, lead time reduction can provide a strategic advantage, specifically when it means the elimination of non-value added waiting time. Queuing theory and Discrete Event Simulation (DES) are two methods commonly used to analyze lead time reduction efforts. Queuing models offer the advantage of fast analytical solutions, whereas DES analyses allow incorporation of high levels of system detail. There is great potential in the coordinated use of these methods. However, it is important to fully understand the assumptions and approximations of queuing theory as it is extended to increasingly realistic scenarios. Here, a novel formulation of queuing model is demonstrated for systems with both rework and process downtime. An emphasis is placed on the extensive testing of the queuing model vs. DES under a wide range of conditions, including various levels of rework rate, arrival variability, and process downtime. The queuing model proves to be effective at estimating lead time in all conditions examined.
具有返工和流程停机时间的系统的排队模型
在制造系统中,缩短交货时间可以提供战略优势,特别是当它意味着消除非增值等待时间时。排队理论和离散事件模拟(DES)是两种常用的方法来分析减少交货时间的努力。排队模型提供了快速分析解决方案的优势,而DES分析允许结合高层次的系统细节。协调使用这些方法有很大的潜力。然而,充分理解排队论的假设和近似是很重要的,因为它被扩展到越来越现实的场景。本文提出了一种具有返工和流程停机的系统排队模型的新公式。重点放在排队模型与DES在各种条件下的广泛测试上,包括各种级别的返工率、到达可变性和流程停机时间。结果表明,该排队模型可以有效地估计所有条件下的交货时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信