Model-driven data harvesting to publish provenance for geospatial references

W. Francis, R. Atkinson, Paul Box, Terry Rankine, Stuart Woodman, L. Kostanski
{"title":"Model-driven data harvesting to publish provenance for geospatial references","authors":"W. Francis, R. Atkinson, Paul Box, Terry Rankine, Stuart Woodman, L. Kostanski","doi":"10.1145/2479832.2479863","DOIUrl":null,"url":null,"abstract":"Accurate and timely place-based information from multiple sources is essential for making informed social protection decisions and rapid interventions. Developing solutions to the challenges presented by multi-disciplanary data integration provides a rationale, and mechanisms, to realize the broader goals of Linked Data. The Spatial Identifier Reference Framework (SIRF) combines principles of indentifiers and Linked Data to link place names to related data. Unlike generic placename databases, SIRF uses semantic web technologies to describe relationships between sources of place names and exposes the provenance of identifiers to disambiuguate and explain them. This paper will describe how SIRF uses explicit information models of the spatial datasets from which it builds an index of spatial identifiers in use. Within the SIRF infrastructure the spatial identifiers are harvested from geospatial data sets and published as Web based identifiers (Uniform Resource Identifiers- URIs). These URIs may be used to access multiple forms of data and metadata for the identified feature, including accessing provenance metadata and direct links back to the source datasets. Formal models using the \"Application Schema\" profile defined by the ISO TC 211 General Feature Model drive a repeatable harvesting process and are directly published as part of the provenance metadata. Mappings between the source and common models, used to drive transformations of harvested data into the common index are also presented together with an explanation of their role. Modelled properties, linked to vocabulary mappings, also expposed by web services, to provide a complete Web-accessible provenance of both the source and the interpretation used.","PeriodicalId":388497,"journal":{"name":"Proceedings of the seventh international conference on Knowledge capture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the seventh international conference on Knowledge capture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2479832.2479863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate and timely place-based information from multiple sources is essential for making informed social protection decisions and rapid interventions. Developing solutions to the challenges presented by multi-disciplanary data integration provides a rationale, and mechanisms, to realize the broader goals of Linked Data. The Spatial Identifier Reference Framework (SIRF) combines principles of indentifiers and Linked Data to link place names to related data. Unlike generic placename databases, SIRF uses semantic web technologies to describe relationships between sources of place names and exposes the provenance of identifiers to disambiuguate and explain them. This paper will describe how SIRF uses explicit information models of the spatial datasets from which it builds an index of spatial identifiers in use. Within the SIRF infrastructure the spatial identifiers are harvested from geospatial data sets and published as Web based identifiers (Uniform Resource Identifiers- URIs). These URIs may be used to access multiple forms of data and metadata for the identified feature, including accessing provenance metadata and direct links back to the source datasets. Formal models using the "Application Schema" profile defined by the ISO TC 211 General Feature Model drive a repeatable harvesting process and are directly published as part of the provenance metadata. Mappings between the source and common models, used to drive transformations of harvested data into the common index are also presented together with an explanation of their role. Modelled properties, linked to vocabulary mappings, also expposed by web services, to provide a complete Web-accessible provenance of both the source and the interpretation used.
模型驱动的数据收集,用于发布地理空间参考的来源
来自多个来源的准确和及时的基于地点的信息对于做出知情的社会保护决策和快速干预至关重要。开发解决方案以应对多学科数据集成所带来的挑战,为实现关联数据的更广泛目标提供了理论基础和机制。空间标识符参考框架(Spatial Identifier Reference Framework, SIRF)结合了标识符和关联数据的原理,将地名与相关数据链接起来。与一般的地名数据库不同,SIRF使用语义web技术来描述地名来源之间的关系,并公开标识符的来源,以消除歧义并解释它们。本文将描述SIRF如何使用空间数据集的显式信息模型,并以此为基础构建正在使用的空间标识符索引。在SIRF基础结构中,空间标识符是从地理空间数据集中获取的,并作为基于Web的标识符(统一资源标识符—uri)发布。这些uri可用于访问已标识特征的多种形式的数据和元数据,包括访问来源元数据和直接链接到源数据集。使用ISO TC 211通用特征模型定义的“应用程序模式”概要文件的正式模型驱动可重复的收获过程,并直接作为来源元数据的一部分发布。源模型和公共模型之间的映射(用于将收集到的数据转换为公共索引)还将连同对其角色的解释一起呈现。建模属性,链接到词汇表映射,也由web服务公开,以提供完整的web可访问的来源和所使用的解释的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信