Intelligent Multimodel Simulation in Decomposed Systems

E. Juuso
{"title":"Intelligent Multimodel Simulation in Decomposed Systems","authors":"E. Juuso","doi":"10.3384/ECP18153308","DOIUrl":null,"url":null,"abstract":"Intelligent methodologies provide a good basis for multi-model simulation. Small, specialised systems have a large number of feasible solutions, but developing truly adaptive, and still understandable, systems for highly complex systems require domain expertise and more compact approaches at the basic level. The nonlinear scaling approach extends the application areas of linear methodologies to nonlinear modelling and reduces the need for decomposition with local models. Fuzzy set systems provide a good basis for understandable models for decomposed systems. Data-based methodologies are suitable for developing these adaptive applications via the following steps: variable analysis, linear models and intelligent extensions. Complex problems are solved level by level to keep the domain expertise as an essential part of the solution.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP18153308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intelligent methodologies provide a good basis for multi-model simulation. Small, specialised systems have a large number of feasible solutions, but developing truly adaptive, and still understandable, systems for highly complex systems require domain expertise and more compact approaches at the basic level. The nonlinear scaling approach extends the application areas of linear methodologies to nonlinear modelling and reduces the need for decomposition with local models. Fuzzy set systems provide a good basis for understandable models for decomposed systems. Data-based methodologies are suitable for developing these adaptive applications via the following steps: variable analysis, linear models and intelligent extensions. Complex problems are solved level by level to keep the domain expertise as an essential part of the solution.
分解系统中的智能多模型仿真
智能方法为多模型仿真提供了良好的基础。小型的、专门的系统有大量可行的解决方案,但是为高度复杂的系统开发真正自适应的、仍然可以理解的系统需要领域专业知识和更紧凑的基本方法。非线性标度方法将线性方法的应用领域扩展到非线性建模,减少了局部模型分解的需要。模糊集系统为分解系统的可理解模型提供了良好的基础。基于数据的方法适合通过以下步骤开发这些自适应应用程序:变量分析、线性模型和智能扩展。复杂的问题逐级解决,以保持领域专业知识作为解决方案的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信