Stochastic color image segmentation using spatial constraints

D. Vasquez, J. Scharcanski, A. Wong
{"title":"Stochastic color image segmentation using spatial constraints","authors":"D. Vasquez, J. Scharcanski, A. Wong","doi":"10.1109/I2MTC.2015.7151236","DOIUrl":null,"url":null,"abstract":"This paper describes an automated method for segmenting color images based on a modified stochastic region merging strategy with multi-scale spatial constraints. First, a bilateral decomposition is performed, and an over-segmentation process is then performed based multichannel information and multi-scale gradients. Next, each sub-region is represented using a normalized color histogram in the CIE L*a*b* color space, and a region adjacency graph is constructed based on the over-segmentation results. Finally, a stochastic region merging strategy with spatial constraints is performed on the region adjacency graph to construct one segmentation map for each scale of representation. Our preliminary visual and quantitative experimental results on the Berkeley image database (BSDS500) are encouraging, and suggest that our proposed approach can provide accurate segmentation results.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes an automated method for segmenting color images based on a modified stochastic region merging strategy with multi-scale spatial constraints. First, a bilateral decomposition is performed, and an over-segmentation process is then performed based multichannel information and multi-scale gradients. Next, each sub-region is represented using a normalized color histogram in the CIE L*a*b* color space, and a region adjacency graph is constructed based on the over-segmentation results. Finally, a stochastic region merging strategy with spatial constraints is performed on the region adjacency graph to construct one segmentation map for each scale of representation. Our preliminary visual and quantitative experimental results on the Berkeley image database (BSDS500) are encouraging, and suggest that our proposed approach can provide accurate segmentation results.
基于空间约束的随机彩色图像分割
提出了一种基于多尺度空间约束的改进随机区域合并策略的彩色图像自动分割方法。首先进行双边分解,然后进行基于多通道信息和多尺度梯度的过分割处理。接下来,使用CIE L*a*b*颜色空间中的标准化颜色直方图表示每个子区域,并根据过度分割结果构建区域邻接图。最后,在区域邻接图上执行带空间约束的随机区域合并策略,为每个表示尺度构造一个分割图。我们在伯克利图像数据库(BSDS500)上的初步视觉和定量实验结果令人鼓舞,并表明我们提出的方法可以提供准确的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信