{"title":"Weighted Grid Partitioning for Panel-Based Bathymetric SLAM","authors":"Junwoo Jang, Jinwhan Kim","doi":"10.1109/OCEANSE.2019.8867531","DOIUrl":null,"url":null,"abstract":"Bathymetric navigation enables the long-term operation of autonomous underwater vehicles by reducing navigation drift errors with no need for GPS position fixes. In the case that a bathymetric map is not available, the simultaneous localization and mapping (SLAM) algorithm is required, but this increases computational complexity and memory requirement. Panel-based bathymetric SLAM could considerably reduce the computational burden. However, it may suffers from incorrect update when the vehicle does not belong to the updated panel. This study proposes a new update method, called weighted grid partitioning, which considers the probability distribution of a vehicle's location, and is more effective in terms of the map accuracy, computational burden, and memory usage compared to standard update methods. The feasibility of the proposed algorithm is verified through simulations.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Bathymetric navigation enables the long-term operation of autonomous underwater vehicles by reducing navigation drift errors with no need for GPS position fixes. In the case that a bathymetric map is not available, the simultaneous localization and mapping (SLAM) algorithm is required, but this increases computational complexity and memory requirement. Panel-based bathymetric SLAM could considerably reduce the computational burden. However, it may suffers from incorrect update when the vehicle does not belong to the updated panel. This study proposes a new update method, called weighted grid partitioning, which considers the probability distribution of a vehicle's location, and is more effective in terms of the map accuracy, computational burden, and memory usage compared to standard update methods. The feasibility of the proposed algorithm is verified through simulations.