Tomasz Patyk, D. Guevorkian, Teemu Pitkänen, P. Jääskeläinen, J. Takala
{"title":"Low-power application-specific FFT processor for LTE applications","authors":"Tomasz Patyk, D. Guevorkian, Teemu Pitkänen, P. Jääskeläinen, J. Takala","doi":"10.1109/SAMOS.2013.6621102","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a processor architecture tailored to mixed-radix4/2/3 FFT algorithm. The proposed design supports all FFT sizes, namely 128-2048/1536, required by the LTE applications. The processor is based on the Transport Triggered Architecture processor architecture, which was customized with a set of function units, designed especially for the application at hand. The processor has been synthesized on an ASIC technology and both energy-efficiency and performance have been evaluated. The developed processor is programmable but shows energy-efficiency comparable to fixed-function ASIC implementations.","PeriodicalId":382307,"journal":{"name":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2013.6621102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
In this paper, we describe a processor architecture tailored to mixed-radix4/2/3 FFT algorithm. The proposed design supports all FFT sizes, namely 128-2048/1536, required by the LTE applications. The processor is based on the Transport Triggered Architecture processor architecture, which was customized with a set of function units, designed especially for the application at hand. The processor has been synthesized on an ASIC technology and both energy-efficiency and performance have been evaluated. The developed processor is programmable but shows energy-efficiency comparable to fixed-function ASIC implementations.