{"title":"Neural modeling of the blood glucose level for Type 1 Diabetes Mellitus patients","authors":"E. Ruiz‐Velázquez, A. Alanis, R. Femat, G. Quiroz","doi":"10.1109/CASE.2011.6042485","DOIUrl":null,"url":null,"abstract":"This paper presents the application of a recurrent multilayer perceptron neural network for modeling blood glucose dynamics in Type 1 Diabetes Mellitus (T1DM). Training is performed based on an extended Kalman filtering (EKF) learning algorithm. Then, the EKF performance is compared with the well-known Levenberg-Marquardt (LM) learning algorithm. The goal is to derive a dynamical mathematical model for T1DM considering the response of a patient to meal and subcutaneous insulin infusion. Thus, the main contribution of this work is to propose a modeling methodology for blood glucose dynamics based in Artificial Neural Networks (ANN). Experimental data, given by a continuous glucose monitoring system, are utilized for identification purposes and for applicability trials of the proposed scheme in T1DM therapy.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents the application of a recurrent multilayer perceptron neural network for modeling blood glucose dynamics in Type 1 Diabetes Mellitus (T1DM). Training is performed based on an extended Kalman filtering (EKF) learning algorithm. Then, the EKF performance is compared with the well-known Levenberg-Marquardt (LM) learning algorithm. The goal is to derive a dynamical mathematical model for T1DM considering the response of a patient to meal and subcutaneous insulin infusion. Thus, the main contribution of this work is to propose a modeling methodology for blood glucose dynamics based in Artificial Neural Networks (ANN). Experimental data, given by a continuous glucose monitoring system, are utilized for identification purposes and for applicability trials of the proposed scheme in T1DM therapy.