Erfan Al-Hossami, Razvan C. Bunescu, Ryan Teehan, Laurel Powell, Khyati Mahajan, Mohsen Dorodchi
{"title":"Socratic Questioning of Novice Debuggers: A Benchmark Dataset and Preliminary Evaluations","authors":"Erfan Al-Hossami, Razvan C. Bunescu, Ryan Teehan, Laurel Powell, Khyati Mahajan, Mohsen Dorodchi","doi":"10.18653/v1/2023.bea-1.57","DOIUrl":null,"url":null,"abstract":"Socratic questioning is a teaching strategy where the student is guided towards solving a problem on their own, instead of being given the solution directly. In this paper, we introduce a dataset of Socratic conversations where an instructor helps a novice programmer fix buggy solutions to simple computational problems. The dataset is then used for benchmarking the Socratic debugging abilities of GPT-based language models. While GPT-4 is observed to perform much better than GPT-3.5, its precision, and recall still fall short of human expert abilities, motivating further work in this area.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.bea-1.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Socratic questioning is a teaching strategy where the student is guided towards solving a problem on their own, instead of being given the solution directly. In this paper, we introduce a dataset of Socratic conversations where an instructor helps a novice programmer fix buggy solutions to simple computational problems. The dataset is then used for benchmarking the Socratic debugging abilities of GPT-based language models. While GPT-4 is observed to perform much better than GPT-3.5, its precision, and recall still fall short of human expert abilities, motivating further work in this area.