Socratic Questioning of Novice Debuggers: A Benchmark Dataset and Preliminary Evaluations

Erfan Al-Hossami, Razvan C. Bunescu, Ryan Teehan, Laurel Powell, Khyati Mahajan, Mohsen Dorodchi
{"title":"Socratic Questioning of Novice Debuggers: A Benchmark Dataset and Preliminary Evaluations","authors":"Erfan Al-Hossami, Razvan C. Bunescu, Ryan Teehan, Laurel Powell, Khyati Mahajan, Mohsen Dorodchi","doi":"10.18653/v1/2023.bea-1.57","DOIUrl":null,"url":null,"abstract":"Socratic questioning is a teaching strategy where the student is guided towards solving a problem on their own, instead of being given the solution directly. In this paper, we introduce a dataset of Socratic conversations where an instructor helps a novice programmer fix buggy solutions to simple computational problems. The dataset is then used for benchmarking the Socratic debugging abilities of GPT-based language models. While GPT-4 is observed to perform much better than GPT-3.5, its precision, and recall still fall short of human expert abilities, motivating further work in this area.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.bea-1.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Socratic questioning is a teaching strategy where the student is guided towards solving a problem on their own, instead of being given the solution directly. In this paper, we introduce a dataset of Socratic conversations where an instructor helps a novice programmer fix buggy solutions to simple computational problems. The dataset is then used for benchmarking the Socratic debugging abilities of GPT-based language models. While GPT-4 is observed to perform much better than GPT-3.5, its precision, and recall still fall short of human expert abilities, motivating further work in this area.
新手调试器的苏格拉底问题:一个基准数据集和初步评估
苏格拉底式提问是一种教学策略,引导学生自己解决问题,而不是直接给出解决方案。在本文中,我们介绍了一个苏格拉底对话的数据集,其中讲师帮助新手程序员修复简单计算问题的错误解决方案。然后使用该数据集对基于gpt的语言模型的苏格拉底式调试能力进行基准测试。虽然观察到GPT-4的表现比GPT-3.5好得多,但其精度和召回率仍然低于人类专家的能力,这激励了该领域的进一步工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信