Ting Li, Liqiang Zhao, Fengfei Song, Chengkang Pan
{"title":"OAI-based End-to-End Network Slicing","authors":"Ting Li, Liqiang Zhao, Fengfei Song, Chengkang Pan","doi":"10.1109/ICDSP.2018.8631616","DOIUrl":null,"url":null,"abstract":"Network slicing is a key technology of 5G network to realize flexible customization for various services based on Network Function Virtualization and Software Defined Network. In this paper, we discuss end-to-end network slicing in terms of non-standalone 5G standard, where eMBB and uRLLC scenarios are supported using 4G core network. Firstly, we present eMBB and uRLLC slices at the user plane respectively. To reduce end-to-end delay in the uRLLC slice, Mobile Edge Computing is introduced. Secondly, both eMBB and uRLLC slices share the same control plane at core network. Finally, we establish a testbed based on the open source software of OAI. Experimental results demonstrate that our proposed scheme can increase the downlink rate for eMBB slice and reduce the delay for uRLLC slice.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"2007 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Network slicing is a key technology of 5G network to realize flexible customization for various services based on Network Function Virtualization and Software Defined Network. In this paper, we discuss end-to-end network slicing in terms of non-standalone 5G standard, where eMBB and uRLLC scenarios are supported using 4G core network. Firstly, we present eMBB and uRLLC slices at the user plane respectively. To reduce end-to-end delay in the uRLLC slice, Mobile Edge Computing is introduced. Secondly, both eMBB and uRLLC slices share the same control plane at core network. Finally, we establish a testbed based on the open source software of OAI. Experimental results demonstrate that our proposed scheme can increase the downlink rate for eMBB slice and reduce the delay for uRLLC slice.