Augmented Microscopy for DNA Damage Quantification: A Machine Learning Tool for Environmental, Medical and Health Sciences

Michele Bernardini, Alessandro Ferri, Lucia Migliorelli, S. Moccia, L. Romeo, S. Silvestri, Luca Tiano, A. Mancini
{"title":"Augmented Microscopy for DNA Damage Quantification: A Machine Learning Tool for Environmental, Medical and Health Sciences","authors":"Michele Bernardini, Alessandro Ferri, Lucia Migliorelli, S. Moccia, L. Romeo, S. Silvestri, Luca Tiano, A. Mancini","doi":"10.1115/detc2019-97902","DOIUrl":null,"url":null,"abstract":"\n The Comet Assay is a well-known procedure employed to investigate the DNA damage and can be applied to several research areas such as environmental, medical and health sciences. User dependency and computation time effort represent some of the major drawbacks of the Comet Assay. Starting from this motivation, we applied a Machine Learning (ML) tool for discriminating DNA damage using a standard hand-crafted feature set. The experimental results demonstrate how the ML tool is able to objectively replicate human experts scoring (accuracy detection up to 92%) by solving the related binary task (i.e., controls vs damaged comets).","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"8 Suppl 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Comet Assay is a well-known procedure employed to investigate the DNA damage and can be applied to several research areas such as environmental, medical and health sciences. User dependency and computation time effort represent some of the major drawbacks of the Comet Assay. Starting from this motivation, we applied a Machine Learning (ML) tool for discriminating DNA damage using a standard hand-crafted feature set. The experimental results demonstrate how the ML tool is able to objectively replicate human experts scoring (accuracy detection up to 92%) by solving the related binary task (i.e., controls vs damaged comets).
用于DNA损伤定量的增强显微镜:用于环境、医学和健康科学的机器学习工具
彗星测定法是一种众所周知的用于研究DNA损伤的方法,可应用于环境、医学和健康科学等多个研究领域。用户依赖性和计算时间是Comet Assay的主要缺点。从这个动机出发,我们应用了一个机器学习(ML)工具,使用标准的手工制作的特征集来区分DNA损伤。实验结果表明,机器学习工具能够通过解决相关的二元任务(即对照与受损彗星)客观地复制人类专家的评分(准确率检测高达92%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信