Sparse Andrew's Sine Norm Promoting Adaptive Algorithm under Non-Gaussian Noises

Abdul Hadi, Xinqi Huang, Burhan Ali, Yingsong Li
{"title":"Sparse Andrew's Sine Norm Promoting Adaptive Algorithm under Non-Gaussian Noises","authors":"Abdul Hadi, Xinqi Huang, Burhan Ali, Yingsong Li","doi":"10.1109/ICEICT55736.2022.9908826","DOIUrl":null,"url":null,"abstract":"Two sparse adaptive filtering (AF) algorithms based on Andrew's sine estimator (ASE) are presented to achieve improved performance for identifying sparse systems, where the ASE is derived within the least-square framework. Furthermore, zero-attracting (ZA) scheme is used in ASE to construct ZA-ASE and its re-weighting form (RZA-ASE) to combat non-Gaussian noises and use the sparse characteristics of the system. Their performance is investigated via simulations and compared with the least-mean square (LMS) and the maximum correntropy criterion (MCC) algorithms to show their superior performance.","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9908826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Two sparse adaptive filtering (AF) algorithms based on Andrew's sine estimator (ASE) are presented to achieve improved performance for identifying sparse systems, where the ASE is derived within the least-square framework. Furthermore, zero-attracting (ZA) scheme is used in ASE to construct ZA-ASE and its re-weighting form (RZA-ASE) to combat non-Gaussian noises and use the sparse characteristics of the system. Their performance is investigated via simulations and compared with the least-mean square (LMS) and the maximum correntropy criterion (MCC) algorithms to show their superior performance.
非高斯噪声下稀疏安德鲁正弦范数提升自适应算法
为了提高识别稀疏系统的性能,提出了两种基于Andrew正弦估计(ASE)的稀疏自适应滤波(AF)算法,其中ASE是在最小二乘框架内导出的。在此基础上,采用零吸引(ZA)方案构建ZA-ASE及其重加权形式(RZA-ASE)来对抗非高斯噪声,并利用系统的稀疏特性。通过仿真研究了该算法的性能,并与最小均方算法(LMS)和最大熵准则算法(MCC)进行了比较,证明了其优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信