Cognitive Adaptive Array Processing (CAAP) — its time has come

E. Brookner
{"title":"Cognitive Adaptive Array Processing (CAAP) — its time has come","authors":"E. Brookner","doi":"10.1109/RADAR.2018.8557333","DOIUrl":null,"url":null,"abstract":"Cognitive Adaptive Array Processing (CAAP) is adaptive array jammer cancellation which makes use of information gathered about the jammer. With CAAP the jammer cancellation can be done with dramatically less processing, with orders of magnitude fewer training samples and with less degradation of the antenna sidelobes. With digital beam forming (DBF) now being more widely used CAAP becomes more feasible to implement. Its time has come. It should be looked at. The results are presented in tutorial form without heavy math. Instead physical explanations are given for these results. The CAAP technique makes use of the information available as to where the jammers are rather than assuming there location is not known as done for the classical sample matrix inversion (SMI) method. This is reminiscent of the Knowledge Aided-STAP (KA-STAP) technique used by DARPA. In many cases no interference covariance matrix inversion is needed and when needed the matrix size is reduced by orders of magnitude and in turn the computation of its matrix inverse. This method reduces the 10 to 30 dB antenna sidelobe degradation usually resulting from using the SMI method. The advantages re the use of diagonal loading (DL) and the principal component (PC) techniques are also addressed. The CAAP technique lends itself well to conventional and MIMO array systems when digital beam forming is used which is the future trend.","PeriodicalId":379567,"journal":{"name":"2018 IEEE Radar Conference (RadarConf18)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radar Conference (RadarConf18)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2018.8557333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cognitive Adaptive Array Processing (CAAP) is adaptive array jammer cancellation which makes use of information gathered about the jammer. With CAAP the jammer cancellation can be done with dramatically less processing, with orders of magnitude fewer training samples and with less degradation of the antenna sidelobes. With digital beam forming (DBF) now being more widely used CAAP becomes more feasible to implement. Its time has come. It should be looked at. The results are presented in tutorial form without heavy math. Instead physical explanations are given for these results. The CAAP technique makes use of the information available as to where the jammers are rather than assuming there location is not known as done for the classical sample matrix inversion (SMI) method. This is reminiscent of the Knowledge Aided-STAP (KA-STAP) technique used by DARPA. In many cases no interference covariance matrix inversion is needed and when needed the matrix size is reduced by orders of magnitude and in turn the computation of its matrix inverse. This method reduces the 10 to 30 dB antenna sidelobe degradation usually resulting from using the SMI method. The advantages re the use of diagonal loading (DL) and the principal component (PC) techniques are also addressed. The CAAP technique lends itself well to conventional and MIMO array systems when digital beam forming is used which is the future trend.
认知自适应阵列处理(CAAP)——它的时代已经到来
认知自适应阵列处理(Cognitive Adaptive Array Processing, CAAP)是一种利用收集到的干扰机信息对阵列干扰机进行自适应消除的方法。使用CAAP,干扰器消除可以用更少的处理、更少的数量级训练样本和更少的天线副瓣退化来完成。随着数字波束形成技术(DBF)的广泛应用,CAAP的实现变得更加可行。是时候了。它应该被审视一下。结果以教程的形式呈现,没有大量的数学。相反,对这些结果给出了物理解释。CAAP技术利用干扰器位置的可用信息,而不是像经典的样本矩阵反演(SMI)方法那样假设干扰器的位置未知。这让人想起DARPA使用的知识辅助stap (KA-STAP)技术。在许多情况下,不需要干涉协方差矩阵的反演,当需要时,矩阵大小按数量级减小,反过来计算其矩阵逆。该方法减小了通常由SMI方法引起的10 ~ 30db天线旁瓣退化。优点是使用对角加载(DL)和主成分(PC)技术也解决了。当采用数字波束形成时,CAAP技术在传统和MIMO阵列系统中表现良好,是未来的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信