An Equality Constrained RQP Algorithm Based on the Augmented Lagrangian Penalty Function

C. Chen, W. Kong, J. Cha
{"title":"An Equality Constrained RQP Algorithm Based on the Augmented Lagrangian Penalty Function","authors":"C. Chen, W. Kong, J. Cha","doi":"10.1115/1.3259008","DOIUrl":null,"url":null,"abstract":"In comparative studies of constrained optimization methods the equality constrained recursive quadratic programming procedure has performed very favorably, particularly in terms of required computer time for execution. Biggs has formulated a strategy based on a quadratic penalty function and proved the global convergence of the method. This paper reformulates the procedure based on an augmented Lagrangian penalty function leading to improved performance and reduced sensitivity to the algorithm parameters","PeriodicalId":206146,"journal":{"name":"Journal of Mechanisms Transmissions and Automation in Design","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms Transmissions and Automation in Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.3259008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In comparative studies of constrained optimization methods the equality constrained recursive quadratic programming procedure has performed very favorably, particularly in terms of required computer time for execution. Biggs has formulated a strategy based on a quadratic penalty function and proved the global convergence of the method. This paper reformulates the procedure based on an augmented Lagrangian penalty function leading to improved performance and reduced sensitivity to the algorithm parameters
基于增广拉格朗日罚函数的等式约束RQP算法
在约束优化方法的比较研究中,等式约束递归二次规划方法表现得非常好,特别是在执行所需的计算机时间方面。Biggs提出了一个基于二次罚函数的策略,并证明了该方法的全局收敛性。本文基于增广拉格朗日罚函数对算法进行了改进,提高了算法性能,降低了对算法参数的敏感性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信