A semi-fuzzy collaborative algorithm for cluster seeking

Rkia Fajr, Ayoub Arafi, Youssef Safi, A. Bouroumi
{"title":"A semi-fuzzy collaborative algorithm for cluster seeking","authors":"Rkia Fajr, Ayoub Arafi, Youssef Safi, A. Bouroumi","doi":"10.1109/SITA.2013.6560795","DOIUrl":null,"url":null,"abstract":"In this paper, we present a semi-fuzzy collaborative algorithm for detecting the optimal number of clusters in a given data set of unlabeled objects. This algorithm is based on a measure of inter-points similarity that allows the detection and creation of clusters, plus a measure of ambiguity that allows collaboration between clusters during their formation. The algorithm also provides a matrix of optimized prototypes representing all the detected clusters. The performance of the proposed method is demonstrated through three examples of test data.","PeriodicalId":145244,"journal":{"name":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2013.6560795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a semi-fuzzy collaborative algorithm for detecting the optimal number of clusters in a given data set of unlabeled objects. This algorithm is based on a measure of inter-points similarity that allows the detection and creation of clusters, plus a measure of ambiguity that allows collaboration between clusters during their formation. The algorithm also provides a matrix of optimized prototypes representing all the detected clusters. The performance of the proposed method is demonstrated through three examples of test data.
一类半模糊协同聚类搜索算法
本文提出了一种半模糊协同算法,用于检测给定数据集中未标记对象的最优聚类数量。该算法基于点间相似性度量,该度量允许集群的检测和创建,以及模糊性度量,该度量允许集群在形成过程中进行协作。该算法还提供了一个代表所有检测到的集群的优化原型矩阵。通过三个测试数据实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信