FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation

Ranyang Zhou, A. Roohi, Durga Misra, Shaahin Angizi
{"title":"FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation","authors":"Ranyang Zhou, A. Roohi, Durga Misra, Shaahin Angizi","doi":"10.1145/3531437.3539721","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Flexible processing-in-DRAM framework named FlexiDRAM that supports the efficient implementation of complex bulk bitwise operations. This framework is developed on top of a new reconfigurable in-DRAM accelerator that leverages the analog operation of DRAM sub-arrays and elevates it to implement XOR2-MAJ3 operations between operands stored in the same bit-line. FlexiDRAM first generates an efficient XOR-MAJ representation of the desired logic and then appropriately allocates DRAM rows to the operands to execute any in-DRAM computation. We develop ISA and software support required to compute in-DRAM operation. FlexiDRAM transforms current memory architecture to a massively parallel computational unit and can be leveraged to significantly reduce the latency and energy consumption of complex workloads. Our extensive circuit-to-architecture simulation results show that averaged across two well-known deep learning workloads, FlexiDRAM achieves ∼ 15 × energy-saving and 13 × speedup over the GPU outperforming recent processing-in-DRAM platforms.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a Flexible processing-in-DRAM framework named FlexiDRAM that supports the efficient implementation of complex bulk bitwise operations. This framework is developed on top of a new reconfigurable in-DRAM accelerator that leverages the analog operation of DRAM sub-arrays and elevates it to implement XOR2-MAJ3 operations between operands stored in the same bit-line. FlexiDRAM first generates an efficient XOR-MAJ representation of the desired logic and then appropriately allocates DRAM rows to the operands to execute any in-DRAM computation. We develop ISA and software support required to compute in-DRAM operation. FlexiDRAM transforms current memory architecture to a massively parallel computational unit and can be leveraged to significantly reduce the latency and energy consumption of complex workloads. Our extensive circuit-to-architecture simulation results show that averaged across two well-known deep learning workloads, FlexiDRAM achieves ∼ 15 × energy-saving and 13 × speedup over the GPU outperforming recent processing-in-DRAM platforms.
FlexiDRAM:一种灵活的内置dram框架,可实现并行通用计算
在本文中,我们提出了一个名为FlexiDRAM的灵活的dram处理框架,它支持复杂的批量位操作的有效实现。该框架是在新的可重构DRAM加速器之上开发的,该加速器利用DRAM子阵列的模拟操作,并将其提升到在存储在同一位线上的操作数之间实现XOR2-MAJ3操作。FlexiDRAM首先生成所需逻辑的有效XOR-MAJ表示,然后适当地将DRAM行分配给操作数以执行任何DRAM内的计算。我们开发计算dram内操作所需的ISA和软件支持。FlexiDRAM将当前的内存架构转换为大规模并行计算单元,可以用来显著降低复杂工作负载的延迟和能耗。我们广泛的电路到架构模拟结果表明,FlexiDRAM在两种众所周知的深度学习工作负载上平均实现了约15倍的节能和13倍的加速,优于最近的dram处理平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信