Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving

Angad Singh, Omar Makhlouf, Maximilian Igl, J. Messias, A. Doucet, Shimon Whiteson
{"title":"Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving","authors":"Angad Singh, Omar Makhlouf, Maximilian Igl, J. Messias, A. Doucet, Shimon Whiteson","doi":"10.48550/arXiv.2212.06968","DOIUrl":null,"url":null,"abstract":"Multi-object state estimation is a fundamental problem for robotic applications where a robot must interact with other moving objects. Typically, other objects' relevant state features are not directly observable, and must instead be inferred from observations. Particle filtering can perform such inference given approximate transition and observation models. However, these models are often unknown a priori, yielding a difficult parameter estimation problem since observations jointly carry transition and observation noise. In this work, we consider learning maximum-likelihood parameters using particle methods. Recent methods addressing this problem typically differentiate through time in a particle filter, which requires workarounds to the non-differentiable resampling step, that yield biased or high variance gradient estimates. By contrast, we exploit Fisher's identity to obtain a particle-based approximation of the score function (the gradient of the log likelihood) that yields a low variance estimate while only requiring stepwise differentiation through the transition and observation models. We apply our method to real data collected from autonomous vehicles (AVs) and show that it learns better models than existing techniques and is more stable in training, yielding an effective smoother for tracking the trajectories of vehicles around an AV.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.06968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-object state estimation is a fundamental problem for robotic applications where a robot must interact with other moving objects. Typically, other objects' relevant state features are not directly observable, and must instead be inferred from observations. Particle filtering can perform such inference given approximate transition and observation models. However, these models are often unknown a priori, yielding a difficult parameter estimation problem since observations jointly carry transition and observation noise. In this work, we consider learning maximum-likelihood parameters using particle methods. Recent methods addressing this problem typically differentiate through time in a particle filter, which requires workarounds to the non-differentiable resampling step, that yield biased or high variance gradient estimates. By contrast, we exploit Fisher's identity to obtain a particle-based approximation of the score function (the gradient of the log likelihood) that yields a low variance estimate while only requiring stepwise differentiation through the transition and observation models. We apply our method to real data collected from autonomous vehicles (AVs) and show that it learns better models than existing techniques and is more stable in training, yielding an effective smoother for tracking the trajectories of vehicles around an AV.
基于粒子的自动驾驶状态空间模型学习分数估计
多目标状态估计是机器人应用中的一个基本问题,因为机器人必须与其他运动物体相互作用。通常,其他对象的相关状态特征不能直接观察到,而必须从观察中推断出来。粒子滤波可以在给定近似跃迁和观测模型的情况下进行这种推理。然而,这些模型通常是先验未知的,由于观测值同时带有过渡和观测噪声,因此产生了一个困难的参数估计问题。在这项工作中,我们考虑使用粒子方法学习最大似然参数。最近解决这个问题的方法通常是在粒子滤波器中通过时间进行微分,这需要解决不可微分重采样步骤,从而产生有偏差或高方差梯度估计。相比之下,我们利用Fisher恒等式来获得分数函数(对数似然的梯度)的基于粒子的近似值,该近似值产生低方差估计,同时只需要通过过渡和观察模型逐步微分。我们将我们的方法应用于从自动驾驶汽车(AV)收集的真实数据,并表明它比现有技术学习更好的模型,并且在训练中更稳定,为跟踪自动驾驶汽车周围车辆的轨迹提供了有效的平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信