Image Layer Modeling for Complex Document Layout Generation

Tianlong Ma, Xingjiao Wu, Xiangcheng Du, Yanlong Wang, Cheng Jin
{"title":"Image Layer Modeling for Complex Document Layout Generation","authors":"Tianlong Ma, Xingjiao Wu, Xiangcheng Du, Yanlong Wang, Cheng Jin","doi":"10.1109/ICME55011.2023.00386","DOIUrl":null,"url":null,"abstract":"Document layout analysis (DLA) plays an essential role in information extraction and document understanding. At present, DLA has reached the milestone achievement; however, DLA of non-Manhattan is still challenging because of annotation data limitations. In this paper, we propose an image layer modeling method to mitigate this issue. The image layer modeling method generates document images of non-Manhattan layouts by superimposing images under pre-defined aesthetic rules. Due to the lack of evaluation benchmark for non-Manhattan layout, we have constructed a manually-labeled non-Manhattan layout fine-grained segmentation dataset. To the best of our knowledge, this is the first manually-labeled non-Manhattan layout fine-grained segmentation dataset. Extensive experimental results verify that our proposed image layer modeling method can better deal with the fine-grained segmented document of the non-Manhattan layout.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Document layout analysis (DLA) plays an essential role in information extraction and document understanding. At present, DLA has reached the milestone achievement; however, DLA of non-Manhattan is still challenging because of annotation data limitations. In this paper, we propose an image layer modeling method to mitigate this issue. The image layer modeling method generates document images of non-Manhattan layouts by superimposing images under pre-defined aesthetic rules. Due to the lack of evaluation benchmark for non-Manhattan layout, we have constructed a manually-labeled non-Manhattan layout fine-grained segmentation dataset. To the best of our knowledge, this is the first manually-labeled non-Manhattan layout fine-grained segmentation dataset. Extensive experimental results verify that our proposed image layer modeling method can better deal with the fine-grained segmented document of the non-Manhattan layout.
复杂文档布局生成的图像图层建模
文档布局分析在信息提取和文档理解中起着至关重要的作用。目前,解放军已经取得了里程碑式的成就;然而,由于标注数据的限制,非曼哈顿地区的DLA仍然具有挑战性。在本文中,我们提出了一种图像层建模方法来缓解这个问题。图像层建模方法通过在预先定义的美学规则下叠加图像来生成非曼哈顿布局的文档图像。由于缺乏对非曼哈顿布局的评估基准,我们构建了一个手动标记的非曼哈顿布局细粒度分割数据集。据我们所知,这是第一个手动标记的非曼哈顿布局细粒度分割数据集。大量的实验结果验证了我们提出的图像层建模方法可以更好地处理非曼哈顿布局的细粒度分割文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信