Parameterized Complexity of Two-Interval Pattern Problem

P. Bose, S. Mehrabi, Debajyoti Mondal
{"title":"Parameterized Complexity of Two-Interval Pattern Problem","authors":"P. Bose, S. Mehrabi, Debajyoti Mondal","doi":"10.4230/LIPIcs.SWAT.2020.16","DOIUrl":null,"url":null,"abstract":"A \\emph{2-interval} is the union of two disjoint intervals on the real line. Two 2-intervals $D_1$ and $D_2$ are \\emph{disjoint} if their intersection is empty (i.e., no interval of $D_1$ intersects any interval of $D_2$). There can be three different relations between two disjoint 2-intervals; namely, preceding ($<$), nested ($\\sqsubset$) and crossing ($\\between$). Two 2-intervals $D_1$ and $D_2$ are called \\emph{$R$-comparable} for some $R\\in\\{<,\\sqsubset,\\between\\}$, if either $D_1RD_2$ or $D_2RD_1$. A set $\\mathcal{D}$ of disjoint 2-intervals is $\\mathcal{R}$-comparable, for some $\\mathcal{R}\\subseteq\\{<,\\sqsubset,\\between\\}$ and $\\mathcal{R}\\neq\\emptyset$, if every pair of 2-intervals in $\\mathcal{R}$ are $R$-comparable for some $R\\in\\mathcal{R}$. Given a set of 2-intervals and some $\\mathcal{R}\\subseteq\\{<,\\sqsubset,\\between\\}$, the objective of the \\emph{2-interval pattern problem} is to find a largest subset of 2-intervals that is $\\mathcal{R}$-comparable. \nThe 2-interval pattern problem is known to be $W[1]$-hard when $|\\mathcal{R}|=3$ and $NP$-hard when $|\\mathcal{R}|=2$ (except for $\\mathcal{R}=\\{<,\\sqsubset\\}$, which is solvable in quadratic time). In this paper, we fully settle the parameterized complexity of the problem by showing it to be $W[1]$-hard for both $\\mathcal{R}=\\{\\sqsubset,\\between\\}$ and $\\mathcal{R}=\\{<,\\between\\}$ (when parameterized by the size of an optimal solution); this answers an open question posed by Vialette [Encyclopedia of Algorithms, 2008].","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2020.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A \emph{2-interval} is the union of two disjoint intervals on the real line. Two 2-intervals $D_1$ and $D_2$ are \emph{disjoint} if their intersection is empty (i.e., no interval of $D_1$ intersects any interval of $D_2$). There can be three different relations between two disjoint 2-intervals; namely, preceding ($<$), nested ($\sqsubset$) and crossing ($\between$). Two 2-intervals $D_1$ and $D_2$ are called \emph{$R$-comparable} for some $R\in\{<,\sqsubset,\between\}$, if either $D_1RD_2$ or $D_2RD_1$. A set $\mathcal{D}$ of disjoint 2-intervals is $\mathcal{R}$-comparable, for some $\mathcal{R}\subseteq\{<,\sqsubset,\between\}$ and $\mathcal{R}\neq\emptyset$, if every pair of 2-intervals in $\mathcal{R}$ are $R$-comparable for some $R\in\mathcal{R}$. Given a set of 2-intervals and some $\mathcal{R}\subseteq\{<,\sqsubset,\between\}$, the objective of the \emph{2-interval pattern problem} is to find a largest subset of 2-intervals that is $\mathcal{R}$-comparable. The 2-interval pattern problem is known to be $W[1]$-hard when $|\mathcal{R}|=3$ and $NP$-hard when $|\mathcal{R}|=2$ (except for $\mathcal{R}=\{<,\sqsubset\}$, which is solvable in quadratic time). In this paper, we fully settle the parameterized complexity of the problem by showing it to be $W[1]$-hard for both $\mathcal{R}=\{\sqsubset,\between\}$ and $\mathcal{R}=\{<,\between\}$ (when parameterized by the size of an optimal solution); this answers an open question posed by Vialette [Encyclopedia of Algorithms, 2008].
双区间模式问题的参数化复杂度
A \emph{2-区间}是实线上两个不相交区间的并集。如果两个2-区间$D_1$和$D_2$的交点为空(即,没有区间$D_1$与任何区间$D_2$相交),则它们为\emph{不相交}。两个不相交的2-区间之间可以有三种不同的关系;即,先行($<$)、嵌套($\sqsubset$)和交叉($\between$)。对于某些$R\in\{<,\sqsubset,\between\}$,如果是$D_1RD_2$或$D_2RD_1$\emph{,则两个2间隔的}$D_1$和$D_2$称为\emph{$R$}\emph{-可比}。一个不相交的2-区间集合$\mathcal{D}$对于某些$\mathcal{R}\subseteq\{<,\sqsubset,\between\}$和$\mathcal{R}\neq\emptyset$具有$\mathcal{R}$ -可比性,如果$\mathcal{R}$中的每一对2-区间对于某些$R\in\mathcal{R}$具有$R$ -可比性。给定一组2-区间和一些$\mathcal{R}\subseteq\{<,\sqsubset,\between\}$, \emph{2区间模式问题}的目标是找到可$\mathcal{R}$比较的2-区间的最大子集。已知2区间模式问题在$|\mathcal{R}|=3$时为$W[1]$ -hard,在$|\mathcal{R}|=2$时为$NP$ -hard(除了$\mathcal{R}=\{<,\sqsubset\}$,它在二次时间内可解)。在本文中,我们通过表明对于$\mathcal{R}=\{\sqsubset,\between\}$和$\mathcal{R}=\{<,\between\}$(当以最优解的大小参数化时),问题的参数化复杂性是$W[1]$ -hard,从而完全解决了问题的参数化复杂性;这回答了Vialette[算法百科全书,2008]提出的一个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信