Infrared thermal image segmentation using expectation-maximization-based clustering

T. J. Ramírez-Rozo, J. García-Álvarez, C. Castellanos-Dominguez
{"title":"Infrared thermal image segmentation using expectation-maximization-based clustering","authors":"T. J. Ramírez-Rozo, J. García-Álvarez, C. Castellanos-Dominguez","doi":"10.1109/STSIVA.2012.6340586","DOIUrl":null,"url":null,"abstract":"In infrared (IR) based non-destructive and evaluation tests (NDT&E) for automated fault detection and identification processes, the segmentation task is a crucial stage. In fact, thermal imaging gives vital condition information of equipment and structures. So, pattern recognition algorithms can perform an accurate diagnosis, through an adequate segmentation. In this paper the Expectation Maximization Clustering (EM-Clustering) segmentation is evaluated for IR images, using as reference watershed transform-based segmentation. IR images were acquired from a test rig of an operating motor at Vibrations Laboratory. Proposed Clustering based segmentation performance is assessed by Dice's coefficient metric, obtaining an average 0.87 Dice's coefficient value. Demonstrating that EM-Clustering Segmentation is a valid choice for IR image processing.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In infrared (IR) based non-destructive and evaluation tests (NDT&E) for automated fault detection and identification processes, the segmentation task is a crucial stage. In fact, thermal imaging gives vital condition information of equipment and structures. So, pattern recognition algorithms can perform an accurate diagnosis, through an adequate segmentation. In this paper the Expectation Maximization Clustering (EM-Clustering) segmentation is evaluated for IR images, using as reference watershed transform-based segmentation. IR images were acquired from a test rig of an operating motor at Vibrations Laboratory. Proposed Clustering based segmentation performance is assessed by Dice's coefficient metric, obtaining an average 0.87 Dice's coefficient value. Demonstrating that EM-Clustering Segmentation is a valid choice for IR image processing.
基于期望最大化聚类的红外热图像分割
在基于红外(IR)无损检测与评估测试(NDT&E)的自动故障检测与识别过程中,分割任务是关键阶段。实际上,热成像可以提供设备和结构的重要状态信息。因此,模式识别算法可以通过适当的分割进行准确的诊断。本文以分水岭变换分割为参考,对红外图像的期望最大化聚类分割进行了评价。红外图像采集自振动实验室一台运行中的电机的试验台。采用Dice的系数度量对所提出的基于聚类的分割性能进行评估,得到平均0.87 Dice的系数值。证明了em聚类分割是红外图像处理的一种有效选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信