Robust D-stability via positivity

D. Siljak, D. Stipanović
{"title":"Robust D-stability via positivity","authors":"D. Siljak, D. Stipanović","doi":"10.1109/ACC.1998.703085","DOIUrl":null,"url":null,"abstract":"The main objective of the paper is to convert the general problem of robust D-stability of a complex polynomial to positivity in the real domain of the corresponding magnitude function. In particular, the obtained Hurwitz stability criterion is applied to polynomials with interval parameters and polynomic uncertainty structures. The robust stability is verified by testing positivity of a real polynomial using the Bernstein subdivision algorithm. A new feature in this context is the stopping criterion, which is applied whenever the algorithm is inconclusive after a large number of iterations, but we can show that at least one zero of the polynomial is closer to the imaginary axis than a prescribed limit.","PeriodicalId":364267,"journal":{"name":"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1998.703085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The main objective of the paper is to convert the general problem of robust D-stability of a complex polynomial to positivity in the real domain of the corresponding magnitude function. In particular, the obtained Hurwitz stability criterion is applied to polynomials with interval parameters and polynomic uncertainty structures. The robust stability is verified by testing positivity of a real polynomial using the Bernstein subdivision algorithm. A new feature in this context is the stopping criterion, which is applied whenever the algorithm is inconclusive after a large number of iterations, but we can show that at least one zero of the polynomial is closer to the imaginary axis than a prescribed limit.
通过正性实现稳健的d稳定性
本文的主要目的是将复多项式的鲁棒d -稳定性问题转化为相应幅度函数实域上的正性问题。特别地,将所得的Hurwitz稳定性判据应用于区间参数多项式和多项式不确定性结构。利用Bernstein细分算法检验实多项式的正性,验证了该方法的鲁棒稳定性。在这种情况下的一个新特征是停止准则,当算法在大量迭代后不确定时应用它,但我们可以证明多项式的至少一个零比规定的极限更接近虚轴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信