VoidWiz: Resolving incompleteness using network effects

Christina Christodoulakis, C. Faloutsos, Renée J. Miller
{"title":"VoidWiz: Resolving incompleteness using network effects","authors":"Christina Christodoulakis, C. Faloutsos, Renée J. Miller","doi":"10.1109/ICDE.2014.6816748","DOIUrl":null,"url":null,"abstract":"If Lisa visits Dr. Brown, and there is no record of the drug he prescribed her, can we find it? Data sources, much to analysts' dismay, are too often plagued with incompleteness, making business analytics over the data difficult. Data entries with incomplete values are ignored, making some analytic queries fail to accurately describe how an organization is performing. We introduce a principled way of performing value imputation on missing values, allowing a user to choose a correct value after viewing possible values and why they were inferred. We achieve this by turning our data into a graph network and performing link prediction on nodes of interest using the belief propagation algorithm.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

If Lisa visits Dr. Brown, and there is no record of the drug he prescribed her, can we find it? Data sources, much to analysts' dismay, are too often plagued with incompleteness, making business analytics over the data difficult. Data entries with incomplete values are ignored, making some analytic queries fail to accurately describe how an organization is performing. We introduce a principled way of performing value imputation on missing values, allowing a user to choose a correct value after viewing possible values and why they were inferred. We achieve this by turning our data into a graph network and performing link prediction on nodes of interest using the belief propagation algorithm.
VoidWiz:使用网络效应解决不完整性
如果丽莎去找布朗医生,但没有他给她开的药的记录,我们能找到吗?令分析师感到沮丧的是,数据源经常存在不完整性,这使得对数据的业务分析变得困难。具有不完整值的数据条目将被忽略,从而导致一些分析查询无法准确描述组织的执行情况。我们介绍了一种对缺失值执行值代入的原则方法,允许用户在查看可能的值以及推断这些值的原因后选择正确的值。我们通过将数据转换为图网络并使用信念传播算法在感兴趣的节点上执行链接预测来实现这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信