Effect of Convolutional Based Local Information with Different Distance Measures in FCM Classification

Shilpa Suman, Adarsh Kumar, Dheeraj Kumar
{"title":"Effect of Convolutional Based Local Information with Different Distance Measures in FCM Classification","authors":"Shilpa Suman, Adarsh Kumar, Dheeraj Kumar","doi":"10.2139/ssrn.3356205","DOIUrl":null,"url":null,"abstract":"Conventional classification procedure assumes that, every pixel consist a single identical class in an image, Fuzzy c-Means (FCM) generally defines membership values for a pixel i.e. any real value between 0 and 1 for each class, in place of enforcing a hard label from among any presumed pure class label set. Fuzzy based FCM classification does not incorporate local spatial information to handle noisy pixels. In this work, Fuzzy local information c-mean (FLICM) and Adaptive Fuzzy local information c-means (ADFLICM) method have been tested to handle noise for remote sensing data classification. These classifiers have been tested with various distance measures. From this work it has been found that all classifiers studied with Canberra distance norm and Fuzziness Factor m=1.1 have given overall best classification accuracy.","PeriodicalId":210282,"journal":{"name":"Geophysics eJournal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3356205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional classification procedure assumes that, every pixel consist a single identical class in an image, Fuzzy c-Means (FCM) generally defines membership values for a pixel i.e. any real value between 0 and 1 for each class, in place of enforcing a hard label from among any presumed pure class label set. Fuzzy based FCM classification does not incorporate local spatial information to handle noisy pixels. In this work, Fuzzy local information c-mean (FLICM) and Adaptive Fuzzy local information c-means (ADFLICM) method have been tested to handle noise for remote sensing data classification. These classifiers have been tested with various distance measures. From this work it has been found that all classifiers studied with Canberra distance norm and Fuzziness Factor m=1.1 have given overall best classification accuracy.
基于卷积的局部信息与不同距离度量在FCM分类中的影响
传统的分类过程假设,图像中的每个像素都由一个相同的类组成,模糊c-均值(FCM)通常定义像素的隶属度值,即每个类在0到1之间的任何实值,而不是从任何假定的纯类标签集中强制执行硬标签。基于模糊的FCM分类不考虑局部空间信息来处理噪声像素。本文将模糊局部信息c均值(FLICM)和自适应模糊局部信息c均值(ADFLICM)方法用于遥感数据分类中的噪声处理。这些分类器已经用各种距离度量进行了测试。从这项工作中发现,所有使用堪培拉距离范数和模糊系数m=1.1研究的分类器都给出了总体上最好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信