On the structure of M-ary Sidelnikov sequences of period p2m − 1

N. Yu, G. Gong
{"title":"On the structure of M-ary Sidelnikov sequences of period p2m − 1","authors":"N. Yu, G. Gong","doi":"10.1109/ISIT.2010.5513664","DOIUrl":null,"url":null,"abstract":"For prime p and a positive integer m, it is shown that M-ary Sidelnikov sequences of period p<sup>2m</sup> − 1, if M | p<sup>m</sup> − 1, can be equivalently generated by the operation of elements in a finite field GF(p<sup>m</sup>), including a p<sup>m</sup>-ary m-sequence. The equivalent representation over GF(p<sup>m</sup>) requires low complexity for implementing the Sidelnikov sequences. Moreover, a (p<sup>m</sup> − 1)×(pm+1) array structure is introduced for the Sidelnikov sequences. From the array structure, it is found that about a half of the column sequences of length p<sup>m</sup> − 1 and their constant multiples have the low correlation magnitude bounded by 3√pm + 1.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For prime p and a positive integer m, it is shown that M-ary Sidelnikov sequences of period p2m − 1, if M | pm − 1, can be equivalently generated by the operation of elements in a finite field GF(pm), including a pm-ary m-sequence. The equivalent representation over GF(pm) requires low complexity for implementing the Sidelnikov sequences. Moreover, a (pm − 1)×(pm+1) array structure is introduced for the Sidelnikov sequences. From the array structure, it is found that about a half of the column sequences of length pm − 1 and their constant multiples have the low correlation magnitude bounded by 3√pm + 1.
周期为p2m−1的m -玛利Sidelnikov序列的结构
对于素数p和正整数m,证明了周期为p2m−1的m位Sidelnikov序列,如果m | pm−1,可以由有限域GF(pm)中的元素运算等价生成,其中包括一个m位m位m序列。GF(pm)上的等价表示对实现Sidelnikov序列要求较低的复杂度。此外,对Sidelnikov序列引入了(pm−1)×(pm+1)数组结构。从阵列结构上发现,长度为pm−1的列序列中,约有一半与它们的常数倍数具有以3√pm + 1为界的低相关数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信