Comparison Analysis of Biclustering Algorithms with the use of Artificial Data and Gene Expression Profiles

S. Babichev, V. Osypenko, V. Lytvynenko, M. Voronenko, M. Korobchynskyi
{"title":"Comparison Analysis of Biclustering Algorithms with the use of Artificial Data and Gene Expression Profiles","authors":"S. Babichev, V. Osypenko, V. Lytvynenko, M. Voronenko, M. Korobchynskyi","doi":"10.1109/ELNANO.2018.8477439","DOIUrl":null,"url":null,"abstract":"The paper presents the research concerning comparison analysis of biclustering algorithms effectiveness with the use of artificial data and gene expression profiles. Internal biclustering quality criterion is proposed as the result of the simulation. The change of this criterion has high correlation with Jaccard index, which was calculated for perfect and obtained biclustering. The technology of bicluster analysis based on “ensemble” method was proposed as the structural block-chart of step-by-step information processing to determine the optimal biclustering level using internal biclustering quality criterion.","PeriodicalId":269665,"journal":{"name":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2018.8477439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The paper presents the research concerning comparison analysis of biclustering algorithms effectiveness with the use of artificial data and gene expression profiles. Internal biclustering quality criterion is proposed as the result of the simulation. The change of this criterion has high correlation with Jaccard index, which was calculated for perfect and obtained biclustering. The technology of bicluster analysis based on “ensemble” method was proposed as the structural block-chart of step-by-step information processing to determine the optimal biclustering level using internal biclustering quality criterion.
使用人工数据和基因表达谱的双聚类算法的比较分析
本文介绍了利用人工数据和基因表达谱对双聚类算法有效性进行比较分析的研究。根据仿真结果,提出了内部双聚类质量准则。该准则的变化与Jaccard指数有较高的相关性,对Jaccard指数进行了优化计算,得到了双聚类。提出了基于“集成”方法的双聚类分析技术,作为分步信息处理的结构框图,利用内部双聚类质量准则确定最优的双聚类水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信