Spell corrector to social media datasets in message filtering systems

Zar Zar Wint, Theo Ducros, M. Aritsugi
{"title":"Spell corrector to social media datasets in message filtering systems","authors":"Zar Zar Wint, Theo Ducros, M. Aritsugi","doi":"10.1109/ICDIM.2017.8244677","DOIUrl":null,"url":null,"abstract":"We develop a spell checker and corrector to check word errors in the social media datasets, which will be used in message filtering systems specially for cyberbullying detection. We use the dictionary techniques to check words and there are ten word spell error checking and correction approaches. If there are more than one corrected word we get from each approach, we use Levenshtein distance to choose the corrected word from the words in the dictionary. The spell correction results were around 90%. Moreover the percentage of each approach highlighted the efficiency of adding letters in the word.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We develop a spell checker and corrector to check word errors in the social media datasets, which will be used in message filtering systems specially for cyberbullying detection. We use the dictionary techniques to check words and there are ten word spell error checking and correction approaches. If there are more than one corrected word we get from each approach, we use Levenshtein distance to choose the corrected word from the words in the dictionary. The spell correction results were around 90%. Moreover the percentage of each approach highlighted the efficiency of adding letters in the word.
消息过滤系统中社交媒体数据集的拼写校正器
我们开发了一个拼写检查和更正器来检查社交媒体数据集中的单词错误,这将用于专门用于网络欺凌检测的消息过滤系统。我们使用字典技术来检查单词,有十种单词拼写错误检查和纠正方法。如果我们从每种方法中得到一个以上的正确单词,我们使用Levenshtein距离从字典中的单词中选择正确的单词。拼写更正的结果在90%左右。此外,每种方法的百分比突出了在单词中添加字母的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信