Analysis and Comparison of Opcode-based Malware Detection Approaches

Mert Nar, A. Kakisim, Necmettin Çarkaci, Melek Nurten Yavuz, I. Sogukpinar
{"title":"Analysis and Comparison of Opcode-based Malware Detection Approaches","authors":"Mert Nar, A. Kakisim, Necmettin Çarkaci, Melek Nurten Yavuz, I. Sogukpinar","doi":"10.1109/UBMK.2018.8566292","DOIUrl":null,"url":null,"abstract":"Malicious software (Malwares) become major threats for digital assets in the digital environment. Traditional malware detection systems use the signatures of the malware executables to detect them. However, the complexity and diversity of malwares increases day by day with metamorphic ones that quickly change its structure and signature. Therefore, most of the researches have focused on the detection of these kinds of malwares. In this work, five different malware detection approaches have been implemented and tested on real and synthetic malware and benign samples. We have collected a new malware data set including 6857 benign and 8701 malicious samples. Experiments have shown that the real malware executables decrease the performance of the methods.","PeriodicalId":293249,"journal":{"name":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2018.8566292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Malicious software (Malwares) become major threats for digital assets in the digital environment. Traditional malware detection systems use the signatures of the malware executables to detect them. However, the complexity and diversity of malwares increases day by day with metamorphic ones that quickly change its structure and signature. Therefore, most of the researches have focused on the detection of these kinds of malwares. In this work, five different malware detection approaches have been implemented and tested on real and synthetic malware and benign samples. We have collected a new malware data set including 6857 benign and 8701 malicious samples. Experiments have shown that the real malware executables decrease the performance of the methods.
基于操作码的恶意软件检测方法分析与比较
在数字环境中,恶意软件成为数字资产的主要威胁。传统的恶意软件检测系统使用恶意软件可执行文件的签名来检测它们。然而,恶意软件的复杂性和多样性日益增加,其结构和特征会迅速改变。因此,大多数研究都集中在这类恶意软件的检测上。在这项工作中,五种不同的恶意软件检测方法已经实现,并在真实和合成的恶意软件和良性样本上进行了测试。我们收集了一个新的恶意软件数据集,包括6857个良性样本和8701个恶意样本。实验表明,真实的恶意软件可执行文件会降低方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信