An algorithm for reusable uninteresting rules in association rule mining

P. Thongtae, S. Srisuk
{"title":"An algorithm for reusable uninteresting rules in association rule mining","authors":"P. Thongtae, S. Srisuk","doi":"10.1109/ICADIWT.2008.4664326","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new framework for reusable association rule mining based on chi2 and odds ratio. We start at mining the association rules using standard Apriori algorithm. The strong rules are defined as association rules, while the weak rules will be evaluated by our proposed method. Firstly, the weak rules must be converted to 2 times 2 contingency table. We then compute the relationship between variables using chi2 and odds ratio. If the weak rules are related to each other with positive or negative relationship, then the weak rules will also be determined as association rules. Our system is evaluated with experiments on the crime data.","PeriodicalId":189871,"journal":{"name":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2008.4664326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we present a new framework for reusable association rule mining based on chi2 and odds ratio. We start at mining the association rules using standard Apriori algorithm. The strong rules are defined as association rules, while the weak rules will be evaluated by our proposed method. Firstly, the weak rules must be converted to 2 times 2 contingency table. We then compute the relationship between variables using chi2 and odds ratio. If the weak rules are related to each other with positive or negative relationship, then the weak rules will also be determined as association rules. Our system is evaluated with experiments on the crime data.
关联规则挖掘中无趣规则的可重用算法
本文提出了一种新的基于chi2和比值比的可重用关联规则挖掘框架。我们开始使用标准Apriori算法挖掘关联规则。将强规则定义为关联规则,而弱规则将通过本文提出的方法进行评估。首先,将弱规则转换为2 × 2列联表。然后,我们使用chi2和比值比计算变量之间的关系。如果弱规则之间存在正相关或负相关关系,则将弱规则确定为关联规则。通过对犯罪数据的实验对系统进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信