Haishuai Wang, Zhao Li, Peng Zhang, Jiaming Huang, Pengrui Hui, Jian Liao, Ji Zhang, Jiajun Bu
{"title":"Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network Approach","authors":"Haishuai Wang, Zhao Li, Peng Zhang, Jiaming Huang, Pengrui Hui, Jian Liao, Ji Zhang, Jiajun Bu","doi":"10.1145/3447548.3467065","DOIUrl":null,"url":null,"abstract":"Live-streaming platforms have recently gained significant popularity by attracting an increasing number of young users and have become a very promising form of online shopping. Similar to the traditional online shopping platforms such as Taobao, live-streaming platforms also suffer from online malicious fraudulent behaviors where many transactions are not genuine. The existing anti-fraud models proposed to recognize fraudulent transactions on traditional online shopping platforms are inapplicable on live-streaming platforms. This is mainly because live-streaming platforms are characterized by a unique type of heterogeneous live-streaming networks where multiple heterogeneous types of nodes such as users, live-streamers, and products are connected with multiple different types of edges associated with edge features. In this paper, we propose a new approach based on a heterogeneous graph neural network for LIve-streaming Fraud dEtection (called LIFE). LIFE designs an innovative heterogeneous graph learning model that fully utilizes various heterogeneous information of shopping transactions, users, streamers, and items from a given live-streaming platform. Moreover, a label propagation algorithm is employed within our LIFE framework to handle the limited number of labeled fraudulent transactions for model training. Extensive experimental results on a large-scale Taobao live-streaming platform demonstrate that the proposed method is superior to the baseline models in terms of fraud detection effectiveness on live-streaming platforms. Furthermore, we conduct a case study to show that the proposed method is able to effectively detect fraud communities for live-streaming e-commerce platforms.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Live-streaming platforms have recently gained significant popularity by attracting an increasing number of young users and have become a very promising form of online shopping. Similar to the traditional online shopping platforms such as Taobao, live-streaming platforms also suffer from online malicious fraudulent behaviors where many transactions are not genuine. The existing anti-fraud models proposed to recognize fraudulent transactions on traditional online shopping platforms are inapplicable on live-streaming platforms. This is mainly because live-streaming platforms are characterized by a unique type of heterogeneous live-streaming networks where multiple heterogeneous types of nodes such as users, live-streamers, and products are connected with multiple different types of edges associated with edge features. In this paper, we propose a new approach based on a heterogeneous graph neural network for LIve-streaming Fraud dEtection (called LIFE). LIFE designs an innovative heterogeneous graph learning model that fully utilizes various heterogeneous information of shopping transactions, users, streamers, and items from a given live-streaming platform. Moreover, a label propagation algorithm is employed within our LIFE framework to handle the limited number of labeled fraudulent transactions for model training. Extensive experimental results on a large-scale Taobao live-streaming platform demonstrate that the proposed method is superior to the baseline models in terms of fraud detection effectiveness on live-streaming platforms. Furthermore, we conduct a case study to show that the proposed method is able to effectively detect fraud communities for live-streaming e-commerce platforms.