Extracting Significant Phrases from Text

Y. Lui, R. Brent, Ani Calinescu
{"title":"Extracting Significant Phrases from Text","authors":"Y. Lui, R. Brent, Ani Calinescu","doi":"10.1109/AINAW.2007.180","DOIUrl":null,"url":null,"abstract":"Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs at least as well as other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000's AutoSummarize feature.","PeriodicalId":338799,"journal":{"name":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINAW.2007.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs at least as well as other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000's AutoSummarize feature.
从文本中提取有意义的短语
如果提供了文档中的重要短语(或关键短语),潜在读者可以快速判断文档是否与他们的信息需求相关。虽然关键字很有用,但没有多少文档分配了关键字,并且手动为现有文档分配关键字的成本很高。因此,有必要自动提取关键字。本文介绍了一种新的领域无关关键字提取算法。该算法将关键词提取问题作为一个分类任务,结合统计和计算语言学技术、一组新的属性和一种新的学习方法来区分关键词和非关键短语。实验表明,该算法的性能至少与其他关键短语提取工具一样好,并且明显优于Microsoft Word 2000的自动摘要功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信