On linear channel-based noise subspace parameterizations for blind multichannel identification

J. Ayadi, D. Slock
{"title":"On linear channel-based noise subspace parameterizations for blind multichannel identification","authors":"J. Ayadi, D. Slock","doi":"10.1109/SPAWC.2001.923848","DOIUrl":null,"url":null,"abstract":"In a multichannel context, the problem of blind estimation of the channel can be parameterized either by the channel impulse response or by the noise-free multivariate prediction error filter and the first vector coefficient of the vector channel. The noise subspace, spanned by a set of vectors that are orthogonal to the signal subspace, can be parameterized according to different linear parameterizations. We begin with the reasons due to which second-order-statistics-based estimation techniques give accurate channel estimates. We focus on the different noise subspace parameterizations in terms of blocking equalizers and classify them. We present linear (in terms of subchannel impulse responses) noise subspace parameterizations and we prove that using a specific parameterization, which is minimal in terms of the number of rows, leads to span the overall noise subspace.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a multichannel context, the problem of blind estimation of the channel can be parameterized either by the channel impulse response or by the noise-free multivariate prediction error filter and the first vector coefficient of the vector channel. The noise subspace, spanned by a set of vectors that are orthogonal to the signal subspace, can be parameterized according to different linear parameterizations. We begin with the reasons due to which second-order-statistics-based estimation techniques give accurate channel estimates. We focus on the different noise subspace parameterizations in terms of blocking equalizers and classify them. We present linear (in terms of subchannel impulse responses) noise subspace parameterizations and we prove that using a specific parameterization, which is minimal in terms of the number of rows, leads to span the overall noise subspace.
基于线性信道噪声子空间参数化的盲多信道识别
在多信道环境下,信道的盲估计问题可以通过信道脉冲响应或无噪声多元预测误差滤波器和矢量信道的第一矢量系数来参数化。噪声子空间由一组与信号子空间正交的向量张成,可以根据不同的线性参数化进行参数化。我们从基于二阶统计量的估计技术给出准确信道估计的原因开始。我们重点研究了不同的噪声子空间参数化,并对它们进行了分类。我们提出了线性(根据子通道脉冲响应)噪声子空间参数化,并证明使用特定的参数化,这是最小的行数,导致跨越整个噪声子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信