SWinvert: a workflow for performing rigorous 1-D surface wave inversions

J. Vantassel, B. Cox
{"title":"SWinvert: a workflow for performing rigorous 1-D surface wave inversions","authors":"J. Vantassel, B. Cox","doi":"10.1093/gji/ggaa426","DOIUrl":null,"url":null,"abstract":"SWinvert is a workflow developed at The University of Texas at Austin for the inversion of surface wave dispersion data. SWinvert encourages analysts to investigate inversion uncertainty and non-uniqueness in shear wave velocity (Vs) by providing a systematic procedure and open-source tools for surface wave inversion. In particular, the workflow enables the use of multiple layering parameterizations to address the inversion's non-uniqueness, multiple global searches for each parameterization to address the inverse problem's non-linearity, and quantification of Vs uncertainty in the resulting profiles. To encourage its adoption, the SWinvert workflow is supported by an open-source Python package, SWprepost, for surface wave inversion pre- and post-processing and an application on the DesignSafe-CyberInfracture, SWbatch, that enlists high-performance computing for performing batch-style surface wave inversion through an intuitive and easy-to-use web interface. While the workflow uses the Dinver module of the popular open-source Geopsy software as its inversion engine, the principles presented can be readily extended to other inversion programs. To illustrate the effectiveness of the SWinvert workflow and to develop a set of benchmarks for use in future surface wave inversion studies, synthetic experimental dispersion data for 12 subsurface models of varying complexity are inverted. While the effects of inversion uncertainty and non-uniqueness are shown to be minimal for simple subsurface models characterized by broadband dispersion data, these effects cannot be ignored in the Vs profiles derived for more complex models with band-limited dispersion data. The SWinvert workflow is shown to provide a methodical procedure and a powerful set of tools for performing rigorous surface wave inversions and quantifying the uncertainty in the resulting Vs profiles.","PeriodicalId":390991,"journal":{"name":"arXiv: Geophysics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gji/ggaa426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

SWinvert is a workflow developed at The University of Texas at Austin for the inversion of surface wave dispersion data. SWinvert encourages analysts to investigate inversion uncertainty and non-uniqueness in shear wave velocity (Vs) by providing a systematic procedure and open-source tools for surface wave inversion. In particular, the workflow enables the use of multiple layering parameterizations to address the inversion's non-uniqueness, multiple global searches for each parameterization to address the inverse problem's non-linearity, and quantification of Vs uncertainty in the resulting profiles. To encourage its adoption, the SWinvert workflow is supported by an open-source Python package, SWprepost, for surface wave inversion pre- and post-processing and an application on the DesignSafe-CyberInfracture, SWbatch, that enlists high-performance computing for performing batch-style surface wave inversion through an intuitive and easy-to-use web interface. While the workflow uses the Dinver module of the popular open-source Geopsy software as its inversion engine, the principles presented can be readily extended to other inversion programs. To illustrate the effectiveness of the SWinvert workflow and to develop a set of benchmarks for use in future surface wave inversion studies, synthetic experimental dispersion data for 12 subsurface models of varying complexity are inverted. While the effects of inversion uncertainty and non-uniqueness are shown to be minimal for simple subsurface models characterized by broadband dispersion data, these effects cannot be ignored in the Vs profiles derived for more complex models with band-limited dispersion data. The SWinvert workflow is shown to provide a methodical procedure and a powerful set of tools for performing rigorous surface wave inversions and quantifying the uncertainty in the resulting Vs profiles.
SWinvert:执行严格的1-D表面波反演的工作流程
SWinvert是德克萨斯大学奥斯汀分校开发的一种工作流程,用于反演表面波频散数据。SWinvert通过提供表面波反演的系统程序和开源工具,鼓励分析人员研究横波速度(v)的反演不确定性和非唯一性。特别是,该工作流允许使用多层参数化来解决反演的非唯一性问题,对每个参数化进行多次全局搜索以解决反演问题的非线性问题,并量化结果剖面中的v不确定性。为了鼓励其采用,swvert工作流由开源Python包SWprepost支持,用于表面波反演的预处理和后处理,以及designsafe - cyberinfrastructure上的应用程序SWbatch,该应用程序通过直观且易于使用的web界面,为执行批处理式表面波反演提供高性能计算。虽然该工作流使用流行的开源Geopsy软件的Dinver模块作为反演引擎,但所提出的原理可以很容易地扩展到其他反演程序中。为了说明SWinvert工作流程的有效性,并为未来的表面波反演研究开发一套基准,对12个不同复杂程度的地下模型的综合实验色散数据进行了反演。虽然反演不确定性和非唯一性对以宽带色散数据为特征的简单地下模型的影响很小,但在以带宽有限色散数据为特征的更复杂模型的v剖面中,这些影响不容忽视。SWinvert工作流程提供了一个有条理的程序和一套强大的工具,用于执行严格的表面波反演和量化所得v剖面的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信