A. R. Fuller, Harinarayan Krishnan, Karim Mahrous, B. Hamann, K. Joy
{"title":"Real-time procedural volumetric fire","authors":"A. R. Fuller, Harinarayan Krishnan, Karim Mahrous, B. Hamann, K. Joy","doi":"10.1145/1230100.1230131","DOIUrl":null,"url":null,"abstract":"We present a method for generating procedural volumetric fire in real time. By combining curve-based volumetric free-form deformation, hardware-accelerated volumetric rendering and Improved Perlin Noise or M-Noise we are able to render a vibrant and uniquely animated volumetric fire that supports bi-directional environmental macro-level interactivity. Our system is easily customizable by content artists. The fire is animated both on the macro and micro levels. Macro changes are controlled either by a prescripted sequence of movements, or by a realistic particle simulation that takes into account movement, wind, high-energy particle dispersion and thermal buoyancy. Micro fire effects such as individual flame shape, location, and flicker are generated in a pixel shader using three- to four-dimensional Improved Perlin Noise or M-Noise (depending on hardware limitations and performance requirements). Our method supports efficient collision detection, which, when combined with a sufficiently intelligent particle simulation, enables real-time bi-directional interaction between the fire and its environment. The result is a three-dimensional procedural fire that is easily designed and animated by content artists, supports dynamic interaction, and can be rendered in real time.","PeriodicalId":140639,"journal":{"name":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1230100.1230131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
We present a method for generating procedural volumetric fire in real time. By combining curve-based volumetric free-form deformation, hardware-accelerated volumetric rendering and Improved Perlin Noise or M-Noise we are able to render a vibrant and uniquely animated volumetric fire that supports bi-directional environmental macro-level interactivity. Our system is easily customizable by content artists. The fire is animated both on the macro and micro levels. Macro changes are controlled either by a prescripted sequence of movements, or by a realistic particle simulation that takes into account movement, wind, high-energy particle dispersion and thermal buoyancy. Micro fire effects such as individual flame shape, location, and flicker are generated in a pixel shader using three- to four-dimensional Improved Perlin Noise or M-Noise (depending on hardware limitations and performance requirements). Our method supports efficient collision detection, which, when combined with a sufficiently intelligent particle simulation, enables real-time bi-directional interaction between the fire and its environment. The result is a three-dimensional procedural fire that is easily designed and animated by content artists, supports dynamic interaction, and can be rendered in real time.