Bipedal walking control in dynamic environment using data mining techniques

Williams Antonio Pantoja Laces, Xiaoou Li, Wen Yu
{"title":"Bipedal walking control in dynamic environment using data mining techniques","authors":"Williams Antonio Pantoja Laces, Xiaoou Li, Wen Yu","doi":"10.1109/ICEEE.2015.7357910","DOIUrl":null,"url":null,"abstract":"In order to design stable walking for a bipedal robot over uneven terrain, advanced control methods such as nonlinear control and receding-horizon control, and exact hybrid dynamics are needed. They are too complicated to be used in the many applications. In this paper, we use data mining techniques, locally weighted learning, principal component regression and regression clustering, and combine with the classical proportional-integral-derivative control. The biped model also uses the observation of human walking. The model structure consists of locally linear modules and principal component regression groups. Experiments and analysis are given to evaluate the effectiveness of our novel method.","PeriodicalId":285783,"journal":{"name":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2015.7357910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to design stable walking for a bipedal robot over uneven terrain, advanced control methods such as nonlinear control and receding-horizon control, and exact hybrid dynamics are needed. They are too complicated to be used in the many applications. In this paper, we use data mining techniques, locally weighted learning, principal component regression and regression clustering, and combine with the classical proportional-integral-derivative control. The biped model also uses the observation of human walking. The model structure consists of locally linear modules and principal component regression groups. Experiments and analysis are given to evaluate the effectiveness of our novel method.
基于数据挖掘技术的动态环境双足行走控制
为了设计双足机器人在不平坦地形上的稳定行走,需要非线性控制、后退水平控制等先进的控制方法和精确的混合动力学。它们太复杂,无法在许多应用程序中使用。本文采用数据挖掘技术、局部加权学习、主成分回归和回归聚类,并结合经典的比例-积分-导数控制。双足动物模型也采用了对人类行走的观察。模型结构由局部线性模块和主成分回归组组成。通过实验和分析验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信