A sparse distributed representation using prime numbers

C. Mawata
{"title":"A sparse distributed representation using prime numbers","authors":"C. Mawata","doi":"10.1145/32439.32462","DOIUrl":null,"url":null,"abstract":"The Fundamental Theorem of Arithmetic (uniqueness of the prime factorisation of positive integers) allows us to represent multivariate polynomials by LISP lists of ordered pairs of numbers. In this representation one can perform all the elementary polynomial arithmetic operations of adding, negating, subtracting and multiplying multivariate polynomials or raising them to non-negative integer powers. The scheme involves the use of an isomorphic image of the ring of polynomials in n variables with rational coefficients. It has the speed and space advantages of Kronecker's trick to transform multivariate polynomials to univariate polynomials. Additional advantages are that the exponents cannot overflow and that the scheme can accommodate terms with negative integer powers.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/32439.32462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Fundamental Theorem of Arithmetic (uniqueness of the prime factorisation of positive integers) allows us to represent multivariate polynomials by LISP lists of ordered pairs of numbers. In this representation one can perform all the elementary polynomial arithmetic operations of adding, negating, subtracting and multiplying multivariate polynomials or raising them to non-negative integer powers. The scheme involves the use of an isomorphic image of the ring of polynomials in n variables with rational coefficients. It has the speed and space advantages of Kronecker's trick to transform multivariate polynomials to univariate polynomials. Additional advantages are that the exponents cannot overflow and that the scheme can accommodate terms with negative integer powers.
使用素数的稀疏分布表示
算术基本定理(正整数质因数分解的唯一性)允许我们用有序数对的LISP列表来表示多元多项式。在这种表示中,人们可以执行所有的初等多项式算术运算,如多元多项式的加、减、减、乘或取其非负整数次幂。该方案涉及使用多项式环的同构像,在n个变量中具有有理系数。它具有克罗内克变换多变量多项式到单变量多项式的速度和空间优势。其他优点是指数不会溢出,并且该方案可以容纳具有负整数次方的项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信