Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah, M. Sha, P. Tiwari, Chenyang Lu, Yixin Chen
{"title":"Maximizing Network Lifetime of WirelessHART Networks under Graph Routing","authors":"Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah, M. Sha, P. Tiwari, Chenyang Lu, Yixin Chen","doi":"10.1109/IoTDI.2015.43","DOIUrl":null,"url":null,"abstract":"Industrial Wireless Sensor-Actuator Networks (WSANs) enable Internet of Things (IoT) to be incorporated in industrial plants. The dynamics of industrial environments and stringent reliability requirements necessitate high degrees of fault tolerance. WirelessHART is an important industrial standard for WSANs that have seen world-wide deployments. WirelessHART employs graph routing to enhance network reliability through multiple paths. Since many industrial devices operate on batteries in harsh environments where changing batteries is prohibitively labor-intensive, WirelessHART networks need to achieve a long network lifetime. To meet industrial demand for long-term reliable communication, this paper studies the problem of maximizing network lifetime for WirelessHART networks under graph routing. We first formulate the network lifetime maximization problem and prove it is NP-hard. Then, we propose an optimal algorithm based on integer programming, a linear programming relaxation algorithm and a greedy heuristic algorithm to prolong the network lifetime of WirelessHART networks. Experiments in a physical testbed and simulations show our algorithms can improve the network lifetime by up to 60% while preserving the reliability benefits of graph routing.","PeriodicalId":135674,"journal":{"name":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTDI.2015.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
Industrial Wireless Sensor-Actuator Networks (WSANs) enable Internet of Things (IoT) to be incorporated in industrial plants. The dynamics of industrial environments and stringent reliability requirements necessitate high degrees of fault tolerance. WirelessHART is an important industrial standard for WSANs that have seen world-wide deployments. WirelessHART employs graph routing to enhance network reliability through multiple paths. Since many industrial devices operate on batteries in harsh environments where changing batteries is prohibitively labor-intensive, WirelessHART networks need to achieve a long network lifetime. To meet industrial demand for long-term reliable communication, this paper studies the problem of maximizing network lifetime for WirelessHART networks under graph routing. We first formulate the network lifetime maximization problem and prove it is NP-hard. Then, we propose an optimal algorithm based on integer programming, a linear programming relaxation algorithm and a greedy heuristic algorithm to prolong the network lifetime of WirelessHART networks. Experiments in a physical testbed and simulations show our algorithms can improve the network lifetime by up to 60% while preserving the reliability benefits of graph routing.