Review of energy aware big data computing measurements, benchmark methods and performance analysis

Zane Wei, D. Ren
{"title":"Review of energy aware big data computing measurements, benchmark methods and performance analysis","authors":"Zane Wei, D. Ren","doi":"10.1109/ICCCN.2014.6911835","DOIUrl":null,"url":null,"abstract":"In this paper we present a brief overview of the current benchmarks for energy efficiency as a way of keeping data centers as green as possible. To support energy management, this paper covers power and energy measurements, benchmarking and analysis in big data processing. The architecture and infrastructure challenges facing energy-aware data centers are summarized. Based on existing technologies, we review the methodologies used in power analysis and system energy optimization in research and reports relating to power benchmarks and energy efficiency improvements and awareness. Our main aim is to highlight the importance of this area in current research.","PeriodicalId":404048,"journal":{"name":"2014 23rd International Conference on Computer Communication and Networks (ICCCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2014.6911835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a brief overview of the current benchmarks for energy efficiency as a way of keeping data centers as green as possible. To support energy management, this paper covers power and energy measurements, benchmarking and analysis in big data processing. The architecture and infrastructure challenges facing energy-aware data centers are summarized. Based on existing technologies, we review the methodologies used in power analysis and system energy optimization in research and reports relating to power benchmarks and energy efficiency improvements and awareness. Our main aim is to highlight the importance of this area in current research.
回顾能源意识大数据计算测量,基准方法和性能分析
在本文中,我们简要概述了当前的能源效率基准,以此作为保持数据中心尽可能绿色环保的一种方式。为了支持能源管理,本文涵盖了大数据处理中的电力和能源测量、基准测试和分析。总结了能源感知型数据中心面临的架构和基础设施挑战。在现有技术的基础上,我们回顾了与电力基准和能源效率改进和意识相关的研究和报告中用于电力分析和系统能源优化的方法。我们的主要目的是强调这一领域在当前研究中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信