Enhancing IEEE 802.15.4 Access Mechanism with Machine Learning

Arslan Musaddiq, Tariq Rahim, Dong-Seong Kim
{"title":"Enhancing IEEE 802.15.4 Access Mechanism with Machine Learning","authors":"Arslan Musaddiq, Tariq Rahim, Dong-Seong Kim","doi":"10.1109/ICUFN49451.2021.9528725","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) network consists of resource-constrained tiny devices. An efficient channel access mechanism for densely deployed IoT devices operating in a lossy environment is one of the major challenges for future IoT networks. The IoT nodes using IEEE 802.15.4 MAC protocol increase the backoff exponent (BE) during the channel sensing period. This blind increase of BE and contention window (CW) before frame transmission affects the network performance. Therefore, in this paper, we propose to use machine learning such as a reinforcement learning (RL) mechanism to handle channel access mechanisms efficiently. The proposed mechanism is evaluated using Contiki 3.0 Cooja simulations. The simulation results indicate that the proposed RL-based mechanism enhances the network performance.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Internet of Things (IoT) network consists of resource-constrained tiny devices. An efficient channel access mechanism for densely deployed IoT devices operating in a lossy environment is one of the major challenges for future IoT networks. The IoT nodes using IEEE 802.15.4 MAC protocol increase the backoff exponent (BE) during the channel sensing period. This blind increase of BE and contention window (CW) before frame transmission affects the network performance. Therefore, in this paper, we propose to use machine learning such as a reinforcement learning (RL) mechanism to handle channel access mechanisms efficiently. The proposed mechanism is evaluated using Contiki 3.0 Cooja simulations. The simulation results indicate that the proposed RL-based mechanism enhances the network performance.
用机器学习增强IEEE 802.15.4访问机制
物联网(IoT)网络由资源受限的微型设备组成。为在有损环境中运行的密集部署的物联网设备提供有效的通道访问机制是未来物联网网络面临的主要挑战之一。采用IEEE 802.15.4 MAC协议的物联网节点在通道感知期间增加了回退指数(BE)。在传输帧之前盲目增加BE和竞争窗口(CW)会影响网络性能。因此,在本文中,我们建议使用机器学习(如强化学习(RL)机制)来有效地处理通道访问机制。采用Contiki 3.0 Cooja模拟对所提出的机制进行了评估。仿真结果表明,基于rl的机制提高了网络性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信