Theoretical Characterization of Liquid Sloshing in Containers

S. Karthick, V. Satish
{"title":"Theoretical Characterization of Liquid Sloshing in Containers","authors":"S. Karthick, V. Satish","doi":"10.1115/imece2021-70152","DOIUrl":null,"url":null,"abstract":"\n This paper theoretically characterizes the sloshing phenomena at the free liquid surface in partially or filled stationary containers based on the analogy with surface gravity waves. The oscillations of the liquid surface and the associated dynamics of the liquid-air interface results in interfacial wave displacement of two types progressive (in-phase) and standing (out of phase) modes. This study involves a rectangular stationary fluid tank partially filled with the tested fluids and subjected to the dominant progressive wave at the liquid-air interface. The sloshing strength is decided based on the temporal progression of the generated wave spectrum obtained utilizing small-amplitude wave theory and linear stability analysis in combination. The expressions for determining the angular frequency, the phase speed, and the corresponding temporal growth rate of the progressive disturbances is derived. The tested fluids include standard liquid water and commercially preferable fluids ethylene glycol and glycerol. This model developed based on the irrotationality of fluid motion neglects the viscous influence and comprises the gravity and the surface tension mimicking a practical scenario. Utilizing deep-water assumptions, the effect of surface tension has been determined for wavenumbers in the range of 490–1250 rad/m. The independent evolution demonstrates the influence of surface tension on the temporal growth rate. Water with the maximum surface tension has a higher growth rate than a low surface tension fluid ethylene glycol among the tested fluids. The effect of surface tension is to escalate the temporal growth rate leading to instability and increased liquid sloshing rate.","PeriodicalId":112698,"journal":{"name":"Volume 10: Fluids Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper theoretically characterizes the sloshing phenomena at the free liquid surface in partially or filled stationary containers based on the analogy with surface gravity waves. The oscillations of the liquid surface and the associated dynamics of the liquid-air interface results in interfacial wave displacement of two types progressive (in-phase) and standing (out of phase) modes. This study involves a rectangular stationary fluid tank partially filled with the tested fluids and subjected to the dominant progressive wave at the liquid-air interface. The sloshing strength is decided based on the temporal progression of the generated wave spectrum obtained utilizing small-amplitude wave theory and linear stability analysis in combination. The expressions for determining the angular frequency, the phase speed, and the corresponding temporal growth rate of the progressive disturbances is derived. The tested fluids include standard liquid water and commercially preferable fluids ethylene glycol and glycerol. This model developed based on the irrotationality of fluid motion neglects the viscous influence and comprises the gravity and the surface tension mimicking a practical scenario. Utilizing deep-water assumptions, the effect of surface tension has been determined for wavenumbers in the range of 490–1250 rad/m. The independent evolution demonstrates the influence of surface tension on the temporal growth rate. Water with the maximum surface tension has a higher growth rate than a low surface tension fluid ethylene glycol among the tested fluids. The effect of surface tension is to escalate the temporal growth rate leading to instability and increased liquid sloshing rate.
容器内液体晃动的理论表征
本文通过与表面重力波的类比,从理论上描述了部分或部分填充的固定容器中自由液体表面的晃动现象。液体表面的振荡和液气界面的相关动力学导致了两种类型的界面波位移,递进(同相)和静止(异相)模式。本研究采用了一个矩形的固定液槽,其中部分充满了被测流体,并在液气界面处受主导进行波的作用。根据小振幅波理论和线性稳定性分析相结合得到的产生波谱的时间级数来确定晃动强度。导出了确定累进扰动的角频率、相速度和相应的时间增长率的表达式。测试流体包括标准液态水和商业上较好的流体乙二醇和甘油。该模型基于流体运动的不旋转性,忽略了粘性的影响,并模拟了实际情况,包括重力和表面张力。利用深水假设,确定了490-1250 rad/m范围内的波数对表面张力的影响。独立演化表明了表面张力对时间生长速率的影响。在测试流体中,具有最大表面张力的水比低表面张力的流体乙二醇具有更高的生长速率。表面张力的作用是使时间增长速率升高,导致不稳定和液体晃动速率增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信