Lp -approximations for solutions of parabolic differential equations on manifolds

A. Smirnova
{"title":"Lp -approximations for solutions of parabolic differential equations on manifolds","authors":"A. Smirnova","doi":"10.15507/2079-6900.24.202203.297-303","DOIUrl":null,"url":null,"abstract":"The paper considers the Cauchy problem for a parabolic partial differential equation in a Riemannian manifold of bounded geometry. A formula is given that expresses arbitrarily accurate (in the Lp-norm) approximations to the solution of the Cauchy problem in terms of parameters - the coefficients of the equation and the initial condition. The manifold is not assumed to be compact, which creates significant technical difficulties - for example, integrals over the manifold become improper in the case when the manifold has an infinite volume. The presented approximation method is based on Chernoff theorem on approximation of operator semigroups.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.24.202203.297-303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the Cauchy problem for a parabolic partial differential equation in a Riemannian manifold of bounded geometry. A formula is given that expresses arbitrarily accurate (in the Lp-norm) approximations to the solution of the Cauchy problem in terms of parameters - the coefficients of the equation and the initial condition. The manifold is not assumed to be compact, which creates significant technical difficulties - for example, integrals over the manifold become improper in the case when the manifold has an infinite volume. The presented approximation method is based on Chernoff theorem on approximation of operator semigroups.
流形上抛物型微分方程解的Lp逼近
研究有界几何黎曼流形中抛物型偏微分方程的柯西问题。给出了一个公式,该公式表示任意精确的(在lp范数中)逼近柯西问题的解的参数-方程的系数和初始条件。流形不被假定为紧凑的,这就产生了重大的技术困难——例如,当流形具有无限体积时,流形上的积分变得不合适。提出了一种基于Chernoff定理的算子半群逼近方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信