Automatic extraction of LIDAR data classification rules

P. Zingaretti, E. Frontoni, G. Forlani, C. Nardinocchi
{"title":"Automatic extraction of LIDAR data classification rules","authors":"P. Zingaretti, E. Frontoni, G. Forlani, C. Nardinocchi","doi":"10.1109/ICIAP.2007.31","DOIUrl":null,"url":null,"abstract":"LIDAR (Light Detection And Ranging) data are a primary data source for digital terrain model (DTM) generation and 3D city models. This paper presents an AdaBoost algorithm for the identification of rules for the classification of raw LIDAR data mainly as buildings, ground and vegetation. First raw data are filtered, interpolated over a grid and segmented. Then geometric and topological relationships among regions resulting from segmentation constitute the input to the tree-structured classification algorithm. Results obtained on data sets gathered over the town of Pavia (Italy) are compared with those obtained by a rule-based approach previously presented by the authors for the classification of the regions.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

LIDAR (Light Detection And Ranging) data are a primary data source for digital terrain model (DTM) generation and 3D city models. This paper presents an AdaBoost algorithm for the identification of rules for the classification of raw LIDAR data mainly as buildings, ground and vegetation. First raw data are filtered, interpolated over a grid and segmented. Then geometric and topological relationships among regions resulting from segmentation constitute the input to the tree-structured classification algorithm. Results obtained on data sets gathered over the town of Pavia (Italy) are compared with those obtained by a rule-based approach previously presented by the authors for the classification of the regions.
激光雷达数据分类规则的自动提取
激光雷达(光探测和测距)数据是数字地形模型(DTM)生成和三维城市模型的主要数据源。本文提出了一种AdaBoost算法,用于识别以建筑物、地面和植被为主的激光雷达原始数据的分类规则。首先对原始数据进行过滤,在网格上插值并分割。然后,由分割得到的区域之间的几何和拓扑关系构成了树形分类算法的输入。在帕维亚镇(意大利)收集的数据集上获得的结果与作者先前提出的基于规则的区域分类方法获得的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信