Support vector driven Markov random fields towards DTI segmentation of the human skeletal muscle

R. Neji, G. Fleury, J. Deux, A. Rahmouni, G. Bassez, A. Vignaud, N. Paragios
{"title":"Support vector driven Markov random fields towards DTI segmentation of the human skeletal muscle","authors":"R. Neji, G. Fleury, J. Deux, A. Rahmouni, G. Bassez, A. Vignaud, N. Paragios","doi":"10.1109/ISBI.2008.4541148","DOIUrl":null,"url":null,"abstract":"In this paper we propose a classification-based method towards the segmentation of diffusion tensor images. We use support vector machines to classify diffusion tensors and we extend linear classification to the non linear case. To this end, we discuss and evaluate three different classes of kernels on the space of symmetric definite positive matrices that are well suited for the classification of tensor data. We impose spatial constraints by means of a Markov random field model that takes into account the result of SVM classification. Experimental results are provided for diffusion tensor images of human skeletal muscles. They demonstrate the potential of our method in discriminating the different muscle groups.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we propose a classification-based method towards the segmentation of diffusion tensor images. We use support vector machines to classify diffusion tensors and we extend linear classification to the non linear case. To this end, we discuss and evaluate three different classes of kernels on the space of symmetric definite positive matrices that are well suited for the classification of tensor data. We impose spatial constraints by means of a Markov random field model that takes into account the result of SVM classification. Experimental results are provided for diffusion tensor images of human skeletal muscles. They demonstrate the potential of our method in discriminating the different muscle groups.
基于支持向量驱动的马尔可夫随机场的人体骨骼肌DTI分割
本文提出了一种基于分类的扩散张量图像分割方法。我们使用支持向量机对扩散张量进行分类,并将线性分类推广到非线性情况。为此,我们讨论并评价了对称定正矩阵空间上适合于张量数据分类的三种不同类型的核。我们通过考虑支持向量机分类结果的马尔可夫随机场模型施加空间约束。给出了人体骨骼肌扩散张量图像的实验结果。它们证明了我们的方法在区分不同肌肉群方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信