An Overview on Conjugate Gradient Methods for Optimization, Extensions and Applications

Hans Steven Aguilar Mendoza, E. P. Papa Quiroz, Miguel Angel Cano Lengua
{"title":"An Overview on Conjugate Gradient Methods for Optimization, Extensions and Applications","authors":"Hans Steven Aguilar Mendoza, E. P. Papa Quiroz, Miguel Angel Cano Lengua","doi":"10.1109/EIRCON52903.2021.9613264","DOIUrl":null,"url":null,"abstract":"This paper aims to identify the current state of the art of the latest research related to Conjugate Gradient (CG) methods for unconstrained optimization through a systematic literature review according to the methodology proposed by Kitchenham and Charter, to answer the following research questions: Q1: In what research areas are the conjugate gradient method used? Q2: Can Dai-Yuan conjugate gradient algorithm be effectively applied in portfolio selection? Q3: Have conjugate gradient methods been used to develop large-scale numerical results? Q4: What conjugate gradient methods have been used to minimize quasiconvex or nonconvex functions? We obtain useful results to extend the applications of the CG methods, develop efficient algorithms, and continue studying theoretical convergence results.","PeriodicalId":403519,"journal":{"name":"2021 IEEE Engineering International Research Conference (EIRCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Engineering International Research Conference (EIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIRCON52903.2021.9613264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to identify the current state of the art of the latest research related to Conjugate Gradient (CG) methods for unconstrained optimization through a systematic literature review according to the methodology proposed by Kitchenham and Charter, to answer the following research questions: Q1: In what research areas are the conjugate gradient method used? Q2: Can Dai-Yuan conjugate gradient algorithm be effectively applied in portfolio selection? Q3: Have conjugate gradient methods been used to develop large-scale numerical results? Q4: What conjugate gradient methods have been used to minimize quasiconvex or nonconvex functions? We obtain useful results to extend the applications of the CG methods, develop efficient algorithms, and continue studying theoretical convergence results.
共轭梯度优化方法及其推广与应用综述
本文旨在根据Kitchenham和Charter提出的方法,通过系统的文献综述,确定无约束优化共轭梯度(CG)方法的最新研究现状,以回答以下研究问题:Q1:共轭梯度方法用于哪些研究领域?Q2:代元共轭梯度算法能否有效应用于投资组合选择?Q3:共轭梯度法是否已被用于开发大规模数值结果?Q4:哪些共轭梯度方法用于最小化拟凸函数或非凸函数?我们得到了有用的结果,以扩展CG方法的应用,开发有效的算法,并继续研究理论收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信