Lookback Period, Epochs and Hidden States Effect on Time Series Prediction Using a LSTM based Neural Network

K. Koparanov, K. Georgiev, Vasil A. Shterev
{"title":"Lookback Period, Epochs and Hidden States Effect on Time Series Prediction Using a LSTM based Neural Network","authors":"K. Koparanov, K. Georgiev, Vasil A. Shterev","doi":"10.1109/TELECOM50385.2020.9299551","DOIUrl":null,"url":null,"abstract":"Forecasting time series problem occurs in various subject areas. Recently neural network techniques have been used for solving such tasks. However, they have not been sufficiently studied. The article explores the influence of the lookback period, the training epochs, and hidden state dimensionality in forecasting time series using long short-term memory. Numerical experiments with example financial data show that using more lags does not improve the results. Such a study of model parameters is important for their proper selection.","PeriodicalId":300010,"journal":{"name":"2020 28th National Conference with International Participation (TELECOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM50385.2020.9299551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Forecasting time series problem occurs in various subject areas. Recently neural network techniques have been used for solving such tasks. However, they have not been sufficiently studied. The article explores the influence of the lookback period, the training epochs, and hidden state dimensionality in forecasting time series using long short-term memory. Numerical experiments with example financial data show that using more lags does not improve the results. Such a study of model parameters is important for their proper selection.
基于LSTM的神经网络对时间序列预测的回溯周期、epoch和隐状态影响
预测时间序列问题存在于各个学科领域。最近,神经网络技术已被用于解决这类任务。然而,它们还没有得到充分的研究。本文探讨了利用长短期记忆预测时间序列时,回溯周期、训练时代和隐藏状态维数的影响。金融实例数据的数值实验表明,使用更多的滞后并不能改善结果。这样的模型参数研究对于模型参数的合理选择具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信