Bogdan Nicolae, Pierre Riteau, Zhuo Zhen, K. Keahey
{"title":"Transparent Throughput Elasticity for Modern Cloud Storage","authors":"Bogdan Nicolae, Pierre Riteau, Zhuo Zhen, K. Keahey","doi":"10.4018/978-1-5225-8295-3.CH007","DOIUrl":null,"url":null,"abstract":"Storage elasticity on the cloud is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. In this chapter, the authors explore how to transparently boost the I/O bandwidth during peak utilization to deliver high performance without over-provisioning storage resources. The proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored during runtime. They show how this idea can be achieved efficiently at the block-device level, using a caching mechanism that leverages iterative behavior and learns from past experience. Second, they introduce a corresponding performance and cost prediction methodology. They demonstrate the benefits of our proposal both for micro-benchmarks and for two real-life applications using large-scale experiments. They conclude with a discussion on how these techniques can be generalized for increasingly complex landscape of modern cloud storage.","PeriodicalId":285463,"journal":{"name":"Applying Integration Techniques and Methods in Distributed Systems and Technologies","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applying Integration Techniques and Methods in Distributed Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-8295-3.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Storage elasticity on the cloud is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. In this chapter, the authors explore how to transparently boost the I/O bandwidth during peak utilization to deliver high performance without over-provisioning storage resources. The proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored during runtime. They show how this idea can be achieved efficiently at the block-device level, using a caching mechanism that leverages iterative behavior and learns from past experience. Second, they introduce a corresponding performance and cost prediction methodology. They demonstrate the benefits of our proposal both for micro-benchmarks and for two real-life applications using large-scale experiments. They conclude with a discussion on how these techniques can be generalized for increasingly complex landscape of modern cloud storage.