Two Heads are Better than One: A Bio-inspired Method for Improving Classification on EEG-ET Data

Eric Modesitt, Ruiqi Yang, Qi Liu
{"title":"Two Heads are Better than One: A Bio-inspired Method for Improving Classification on EEG-ET Data","authors":"Eric Modesitt, Ruiqi Yang, Qi Liu","doi":"10.48550/arXiv.2304.06471","DOIUrl":null,"url":null,"abstract":"Classifying EEG data is integral to the performance of Brain Computer Interfaces (BCI) and their applications. However, external noise often obstructs EEG data due to its biological nature and complex data collection process. Especially when dealing with classification tasks, standard EEG preprocessing approaches extract relevant events and features from the entire dataset. However, these approaches treat all relevant cognitive events equally and overlook the dynamic nature of the brain over time. In contrast, we are inspired by neuroscience studies to use a novel approach that integrates feature selection and time segmentation of EEG data. When tested on the EEGEyeNet dataset, our proposed method significantly increases the performance of Machine Learning classifiers while reducing their respective computational complexity.","PeriodicalId":129626,"journal":{"name":"Interacción","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.06471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying EEG data is integral to the performance of Brain Computer Interfaces (BCI) and their applications. However, external noise often obstructs EEG data due to its biological nature and complex data collection process. Especially when dealing with classification tasks, standard EEG preprocessing approaches extract relevant events and features from the entire dataset. However, these approaches treat all relevant cognitive events equally and overlook the dynamic nature of the brain over time. In contrast, we are inspired by neuroscience studies to use a novel approach that integrates feature selection and time segmentation of EEG data. When tested on the EEGEyeNet dataset, our proposed method significantly increases the performance of Machine Learning classifiers while reducing their respective computational complexity.
两个脑袋胜过一个脑袋:一种改进EEG-ET数据分类的生物启发方法
脑电数据分类是脑机接口(BCI)性能及其应用的重要组成部分。但由于其生物学性质和采集过程的复杂性,外界噪声往往会对EEG数据造成干扰。特别是在处理分类任务时,标准的脑电信号预处理方法从整个数据集中提取相关事件和特征。然而,这些方法平等地对待所有相关的认知事件,忽视了大脑随时间变化的动态本质。相比之下,我们受到神经科学研究的启发,使用一种将EEG数据的特征选择和时间分割相结合的新方法。当在EEGEyeNet数据集上进行测试时,我们提出的方法显着提高了机器学习分类器的性能,同时降低了它们各自的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信