An Intelligent Range Gate Pull-off (RGPO) Jamming Method

Ruitao Jia, Tianxian Zhang, Yuanhang Wang, Yanhong Deng, L. Kong
{"title":"An Intelligent Range Gate Pull-off (RGPO) Jamming Method","authors":"Ruitao Jia, Tianxian Zhang, Yuanhang Wang, Yanhong Deng, L. Kong","doi":"10.1109/UCET51115.2020.9205386","DOIUrl":null,"url":null,"abstract":"In this paper, considering a range gate pull-off (RGPO) jamming for self-defense jamming, an optimal multiframe RGPO jamming strategy is investigated with unknown environment model. The optimal RGPO jamming strategy problem is solved by proposing a multi-frame RGPO jamming strategy optimization method based on black-box optimization technique. Firstly, we construct a multi-frame optimization model of RGPO jamming strategy by choosing the success rate of pull-off as the objective function. Then, to improve the jamming performance, a particle swarm optimization(PSO) algorithm based on Monte Carlo prediction fitness function(MC-PSO) is proposed. Finally, numerical simulation results are provided to verify the validity of the proposed method.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, considering a range gate pull-off (RGPO) jamming for self-defense jamming, an optimal multiframe RGPO jamming strategy is investigated with unknown environment model. The optimal RGPO jamming strategy problem is solved by proposing a multi-frame RGPO jamming strategy optimization method based on black-box optimization technique. Firstly, we construct a multi-frame optimization model of RGPO jamming strategy by choosing the success rate of pull-off as the objective function. Then, to improve the jamming performance, a particle swarm optimization(PSO) algorithm based on Monte Carlo prediction fitness function(MC-PSO) is proposed. Finally, numerical simulation results are provided to verify the validity of the proposed method.
一种智能距离门拉断(RGPO)干扰方法
针对自防御干扰中的距离门拉断(RGPO)干扰,在未知环境模型下研究了一种最优多帧RGPO干扰策略。提出了一种基于黑盒优化技术的多帧RGPO干扰策略优化方法,解决了RGPO干扰策略优化问题。首先,以拉离成功率为目标函数,构建了RGPO干扰策略的多帧优化模型;然后,为了改善干扰性能,提出了一种基于蒙特卡罗预测适应度函数的粒子群优化算法(MC-PSO)。最后给出了数值仿真结果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信