Resolvent degree, Hilbert’s 13th Problem and geometry

B. Farb, J. Wolfson
{"title":"Resolvent degree, Hilbert’s 13th Problem and geometry","authors":"B. Farb, J. Wolfson","doi":"10.4171/lem/65-3/4-2","DOIUrl":null,"url":null,"abstract":"We develop the theory of resolvent degree, introduced by Brauer \\cite{Br} in order to study the complexity of formulas for roots of polynomials and to give a precise formulation of Hilbert's 13th Problem. We extend the context of this theory to enumerative problems in algebraic geometry, and consider it as an intrinsic invariant of a finite group. As one application of this point of view, we prove that Hilbert's 13th Problem, and his Sextic and Octic Conjectures, are equivalent to various enumerative geometry problems, for example problems of finding lines on a smooth cubic surface or bitangents on a smooth planar quartic.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/65-3/4-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We develop the theory of resolvent degree, introduced by Brauer \cite{Br} in order to study the complexity of formulas for roots of polynomials and to give a precise formulation of Hilbert's 13th Problem. We extend the context of this theory to enumerative problems in algebraic geometry, and consider it as an intrinsic invariant of a finite group. As one application of this point of view, we prove that Hilbert's 13th Problem, and his Sextic and Octic Conjectures, are equivalent to various enumerative geometry problems, for example problems of finding lines on a smooth cubic surface or bitangents on a smooth planar quartic.
可解度,希尔伯特第13问题和几何
我们发展了Brauer \cite{Br}引入的可解度理论,以研究多项式根公式的复杂性,并给出希尔伯特第13问题的精确公式。我们将这一理论推广到代数几何中的枚举问题,并认为它是有限群的一个固有不变量。作为这一观点的一个应用,我们证明了希尔伯特的第13个问题,以及他的六次方猜想和八次方猜想,等价于各种枚举几何问题,例如在光滑的三次曲面上求直线或在光滑的平面四次曲面上求点的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信